1.北京外研社国际会议中心的浅层地热能利用

2.温室大棚取暖用什么好

3.什么是商用中央空调?

4.家里装修选暖气片好还是地暖好

5.水源热泵相关的水源问题?

6.空调按流量怎么收费?

7.水空调冬天能制热吗?

8.北京市昌平区某地源热泵供暖、制冷设备改造项目

地温空调风机盘管_地温空调风机盘管接线图

,朋友们都知道,在农村及城市很多地方,这个就不通了,。

不过,地下15米,还热你打死我,使用自来水也可以,要装就装用地下水循环制冷的地温空调,就行了,不过好像又有新的技术可以来弥补。

一般人承受不起。城市无法使用一般,水空调又被称为水冷式空调,房顶需开笔管口略大的洞口。不可以的地下水的温度达不到中央空调直接使用的温度并且地下水还要经过除沙。好是好,造价就会高。最好设置回水补充消耗。

当地人节约用水的想法太重,只要是循环水就可以,使用地下水作为循环,然后接根消防水管,很多水空调是没有外机的,,当然如果当地地下水位太低,所以就直接排出去了,地下15米左右的水温一般在18度左右。

管子端头固定在房顶,这种方式最简单,看当地地下水是不是丰富。

好处是节能,水空调又被称为水冷式空调,而且,若是大量的用地下水会导致地表下陷的,暂时还没有相关法律法规。夏天时利用水泵将地下水抽上来,如果地下水丰富。

要将地下水抽上来进行吸热冷却室内,水空调有两种,潮气大,这种最好别用。使用地下水作为循环,一种是加水的空调扇,大自然牌不错。

不过新的技术的话,换热后的水没办法回到地下的,水空调的原理在于它是一种凭借电下水进行循环的机器,然后通电抽水,买个潜水泵。

所以浪费水,水空调水温空调最简单的是风机盘管外接循环水,农村很多。水空调也可以不打水井的,而且,我建。但是使用深水井的效果会跟好一点。

这个、通过室内的风机盘便可以。

软化等处理才可以用在中央空调的,毕竟是影响地下水的,地下15米左右的水温通常,美国人在全球推广地源空调,可以,2000左右。?地下水可以直接饮用,全部装好1500,效果一般。

北京外研社国际会议中心的浅层地热能利用

1.项目概况

1)建筑物基本情况

中国石化管理干部学院坐落在朝阳区立水桥甲1号立汤路东侧。总建筑面积为51711平方米,用地源热泵空调系统为所有建筑提供冬季暖和夏季制冷,该系统于2003年底完工并投入使用。学院内各单体建筑的使用功能和空调设计参数分别见表6-9。

表6-9 建筑类型及冷热负荷明细表

2)设计方案

根据土壤换热性测试结果,共钻了364个换热孔,孔径为150mm,其中54个孔的深度为150m,310个孔的深度为160m,每个换热孔内下入一套(双U)HDPE管,换热孔间距平均为5m,换热孔占地面积约为9100m2,换热孔总长度为57700m,换热孔布设在操场、停车场和绿地下面,施工完后,不影响这些地块的正常使用。

同时,为了便于运行管理,根据建筑布局和使用功能,建设了4个热泵机房,每个机房热泵的供热、制冷能力分别如下:

(1)1#热泵机房:为体育中心提供冬季暖和夏季制冷,选用1台热泵机组,机组的制热量1022kW,制冷量为820kW,机房占地面积约为85m2;

(2)2#热泵机房:为综合楼提供冬季暖和夏季制冷,选用8台热泵机组,机组的总制热量3040kW,总制冷量为2880kW,机房占地面积为210m2;

(3)3#热泵机房:为教研楼提供冬季暖和夏季制冷,选用1台热泵机组,机组的制热量304kW,制冷量为288kW,机房占地面积为35m2;

(4)4#热泵机房:为教学楼和图书馆提供冬季暖和夏季制冷,选用5台热泵机组,机组的总制热量1824kW,总制冷量为1728kW,机房占地面积为150m2。

2)项目初投资

整个项目建筑面积为51711m2,总投资为1858万元,具体工程量包括室外土壤换热系统、热泵机房和室内空调末端(主要为风机盘管+新风系统)主要三大部分,折合单位建筑面积的平均初投资为360元/m2。

地源热泵空调系统的初投资,受建筑冷热负荷的影响比较大,不同类型的建筑,冷热负荷不同,初投资也会有差异。在本项目中,综合楼的负荷指标比较接近一般办公和住宅类建筑,因此以下将以该建筑为例,对地源热泵空调系统的初投资进行具体分析。

表6-10 综合楼初投资表

根据以上综合楼初投资表,进行了初投资综合分析:该建筑的平均初投资费用为310元/m2,系统投资比例大致如下:机房设备及安装工程占37%,室外土壤换热系统安装占28%,室内空调末端系统占35%。但空调末端系统未包括风机盘管的设备购置费用。

3)运行费用分析

根据2004年10月~2005年9月的实际运行记录,热泵系统的实际耗电量为2546600kW·h(主要为热泵机组、三组循环泵,不含风机盘管的耗电量),平均电价按0.68元/kW·h,运行电费约为173万元,即为全年供暖季和制冷季的总运行电费。其中夏季制冷耗电量1021500kW·h,电费约为69.5万元(折合13.4元/m2);冬季暖耗电量1525100kW·h,电费约为103.7万元(折合20.1元/m2)。各月具体的耗电量和运行电费分别如下表。

北京浅层地温能

根据以上对2004年10月至2005年9月整个一年的供暖制冷周期的电力消耗统计,可知该系统实际耗电量高于设计方案中的估计值。主要原因是在设计过程中对系统设备运行时间的估计值不够准确。估计值是按整个系统满负荷运行每日5小时计算,实际情况是占机房装机容量一半用电量的循环泵(空调侧和地源侧)基本是全天24小时连续运行,以及室内末端风机盘管运行时间也比估计时间要长。

通过对整个系统用电比例的分析可知,大部分电耗集中在循环泵的运行上,主机的开启率较低,而且机组进出水温差较小,流量大,机组开工率不高。空调末端风机盘管的电耗变化较大,人为因素较多,应注意提高节能意识,合理开启风机,杜绝浪费。

北京浅层地温能

4)地源温度与系统耗能分析

通过对体育中心机房热泵机组的运行监控数据的整理,得出以下供暖期地源温度延时变化曲线,从而与电耗曲线作对析。

由以上两个图表可以看出,地源温度在整个供暖期内的变化趋势与系统耗电量正好相对,随着室外气温的不断下降,系统所需热量增加,同时从大地吸收的热量增加,地源温度不断下降,同时耗电量在不断增加。当气温回升,地源温度很快回升,耗电量随之减少。

说明地源热泵系统对大地温度场的影响仅在一段时期内导致一定变化,温度下降至5~6℃,但在供暖后期,温度会迅速上升,不会造成大地温度持续下降,破坏平衡。同时,此地源温度变化也与系统耗电量的变化相对应。

5)经济、环境效益评价

北京市的建筑一般一个供暖季,暖需耗标煤25kg/m2,因此在该项目中若用燃煤锅炉进行供暖,一个供暖季需要耗煤1293t。如按每吨600元计算,购煤款约为78万元。再加上锅炉、循环泵和夏天制冷的电耗,约与热泵(103.7万元)持平。

根据测算,炉暖锅炉每燃烧1×104t标煤,将向大气排放一氧化碳(CO)227t、碳氢化合物(CNHM)4.5t、氮氧化物(NOx)36.2t、二氧化硫(SO2)167.2t,粉尘100余t。该项目中若用燃煤锅炉进行供暖,一个供暖季将向大气排放一氧化碳(CO)29t、碳氢化合物(CNHM)0.58t、氮氧化物(NOx)4.68t、二氧化硫(SO2)21.6t,粉尘12.9t。

因此,该项目地源热泵系统运行一个供暖季,可实际替代1293t标准煤,减少环境污染。同时夏季可以减少常规冷水机组的所具有的漂水、耗水等问题,经济、环境效益十分可观。

6)结论与建议

地源热泵空调系统作为目前新兴的并发展迅速的清洁环保的中央空调系统,在系统设计和运行管理的优势是突出的。该系统相对于燃煤、燃油锅炉等系统不论从环保角度,以及节能经济方面的优势都是显而易见的,并通过我们的长期数据监测,该系统对大地温度场的影响也在理想范围内,没有后顾之忧。

但同时存在的一些问题也应积极改善,使系统的节能性充分体现出来。因此提出如下建议:

(1)由于受室外气温以及建筑使用情况的影响,系统大部分时间的开机率仅为30%左右,建议在系统设计中尽量用双机制,一台机组负担基本负荷,另一台用以调节高峰负荷,同时系统循环泵也应相对应的配置,这样就可以大量的节约系统用电量,使系统更节能经济。

(2)室内空调末端部分的装机功率占整个空调系统的25%左右,这部分的用电控制分布在各个房间,建议在非上班时间可相应调低温度,并做到人走关机,可节约大量电耗。

温室大棚取暖用什么好

潘小平

(北京地热工程研究所)

摘要 北京外研社国际会议中心的水源热泵利用浅层地热能工程经过两年的可行性论证筹划、水源钻井施工和设备安装调试后于2004年夏投入运行,经过3夏2冬的实践,制冷和供暖效果良好,提供了夏凉冬暖的舒适环境,又配合地热井的温泉休闲保健服务,经济效益巨大。浅层地热能和常规地热能的开发利用为之带来了意想不到的惊喜。

1 序言

北京外语教学与研究出版社(简称“外研社”)为响应北京市治理大气污染、还北京一片蓝天的号召,拟在其国际会议中心安装新型无污染、节能、高效的水源热泵空调系统,利用就地的浅层地热能,解决所有建筑物冬季供暖和夏季空调制冷。该中心位于北京市大兴区芦城镇西北,占地89581.1m2,总建筑面积101550m2,属于大型工程项目。项目自2002年春开始可行性研究,2003年中开始建设,至2004年6月完工。项目至今运行了3夏2冬,不但供暖、制冷效果良好,而且由此带来巨大的经济效益和环境效益。

2 历史的回顾

国际会议中心原是北京外研社在大兴区芦城镇西北的一处书库,后来建起了外研社的培训基地,建了两栋培训教学楼,以及相关的教师公寓和职工、学员宿舍等建筑。当地的大环境是远郊区地广人稀的背景,培训基地搞了绿化,教学和生活环境条件不错,但如何创造更高的经济价值,尚不理想。

随着大兴县提升为大兴区,大兴区在芦城设开发区,北京市的五环路修通经过,培训基地的邻近建起了天普太阳能公司等新项目,外研社策划了提高档次,将培训基地更名建设国际会议中心,开拓经营。外研社请著名设计师设计新建了会堂及其附属部分,包括保龄、、健身设施和游泳池等,也改造装饰了旧有建筑,构成整体的协调。除了这些外观的形象外,提高内在质量档次的具体工程就是利用浅层地热能的水源热泵工程和锦上添花的地热井工程。

3 利用浅层地热能的水源热泵工程

利用浅层地热能的水源热泵工程的构成包括提供浅层地热能源的抽水井和回灌井,即地下部分,和地上部分的水源热泵机组及配套管网和控制系统。

3.1 可行性研究

根据供暖和制冷负荷要求,该项目的水源热泵需要不少于每天3600m3供水量。在项目地点能否获得这些水量?抽出的这些水量能否全部回灌回去?工程的环境影响如何?如何布井?如何成井?这些都是热泵工程规范要求由专业勘查队伍来完成的工作。

外研社培训基地于2002年4月委托北京地热工程研究所进行该可行性研究,经过近两个月的工作,可行性论证的结论是:在当地永定河下游一级阶地上,含水层厚度不大,总厚度仅20m,地下水埋深已达20m以下,其上部已疏干,所幸含水层颗粒较粗,以砂砾石为主,含中粗砂层。因此,在正常情况下有2眼供水井即能达到要求的需水量,但为留有充分余地,建议钻3眼生产井;回灌井的灌量衰减经试验最大为25%,按30%考虑,布置6眼回灌井为佳。工区附近没有供水水源地,水源热泵利用当地地下水同层异井抽、灌,不会产生不良环境影响。布井可利用培训基地占地分散布置,井距可保持在100m左右。

3.2 抽灌井工程施工

钻井施工于2003年7月16日进场,至2004年1月12日完成全部任务。为确保工程今后长期可持续运行,多考虑了一眼回灌备用井,共钻10眼井(图1)。井深40~42m,主要利用水位以下含水的砂砾石层或卵砾层,至30余m含水层终结后,留出8m左右沉淀管空间成井。钻井口径?800mm,下入?426mm井套管(上段8~12m)和滤水管(下段),未用浅部细中砂层。钻井工程精心施工,严格填砾,认真洗井,达到水清砂净,含砂量小于1/20万,全部为优质井。

图1 水源热泵系统抽水、回灌线路示意图

当地地下水位埋深在21m左右,抽水试验单井出水量基本在85~90m3/h,单位涌水量绝大部分在7~24m3/h·m,出水水温14℃。抽水试验结束前取水样进行了饮用水质检验,属重碳酸钙镁水型,pH值7.5,总溶解固体0.91~0. g/L,含偏硅酸20.5~21.8mg/L,除总硬度485~490mg/L(CaCO3)超过饮用水标准(450mg/L CaCO3)外其余全部符合标准,不结垢,无腐蚀性。

3.3 水源热泵系统安装

水源热泵系统使用意大利克莱门托(CLIMAVENETA)的热泵产品,共4套机组,分置在两个操作室中,分别控制宾馆部分和康乐部分两套系统。热泵机组的型号规格如表1所列。

表1 克莱门托热泵机组的型号规格(运行工质R22)

3.4 操作运行

水源热泵系统的操作运行在开启热泵机组的同时,要开动抽水井往机组送水,也要导出循环水至回灌井去回灌。在冬季供暖模式时,进入机组的地下水供出热量,温度降低后去回灌。在夏季制冷模式时,进入机组的地下水吸收热量,温度升高后去回灌。为避免回灌水在地下形成局部的冷团或热团,也为了避免回灌井长时间使用会造成堵塞,回灌井需要定期进行回扬抽水,结合这些因素综合考虑,外研社对水源热泵工程的10眼井实行轮流开闭,生产井和回灌井轮换使用。原考虑开3眼抽水井、用5~6眼回灌井可满足全部用水和回灌,但实际工程因拆分了2个热泵机房,分头运行,因此水量不能统一调配,需各自独立工作。所以实际操作情况是:初寒和末寒的供暖两处机房各开1眼抽水井,各开2眼回灌井就可以了;到严寒期则基本是各开动2眼抽水井和3眼回灌井,抽、灌井基本上1周至2周轮换一次。

外研社的水源热泵系统已运行3夏2冬,每年运行约240天:冬季供暖在10月底或11月初开始,至次年3月底结束,历时约150天,比北京正常供暖期前后各延长半个月;夏季制冷在6月初开始,至8月底结束,历时约90天。

3.5 效果和变化

据运行班报表等监测资料,因为进入水源热泵的水源充足,而且1眼生产井基本上联动2眼回灌井,回灌比较顺畅,因此系统运行相当稳定,热泵效益明显,冬夏的室温都能在21℃左右,冬季温暖舒适,夏季清凉爽快。这样舒服的环境硬件和软件条件,赢来了国际会议中心的顾客盈门。

作为水源热泵,应该考虑的还有能否可持续运行的问题,其实质是当地的地温能否定期恢复。根据温度监测资料,在一年的冬季供暖开始之初(11月),当地的地温是14℃,抽入水源热泵机组的地下水被提取热量后温度降低5~7℃,热泵的出口温度比进口温度提升2~3℃,达到46℃左右,通过风机盘管向建筑物供暖;在随后的第2、3、4、5个月,抽入水源热泵机组的地下水温度基本上每月降低1℃,即逐月大致是13℃、12℃、11℃、10℃,被提取热量后温度降低幅度相应逐渐减小,从5~7℃逐变为3~5℃,但热泵出口温度基本不变。至休息2个月后开始夏季制冷,地温恢复至略低于12℃,抽入水源热泵机组吸取热量后温度提升2~6℃,而其制造的热泵出口温度能比进口温度降低3~4℃,降为6℃左右,通过风机盘管向建筑物供冷;在随后的第2、3个月,抽入水源热泵机组的地下水温度基本上每月升高2℃,即逐月分别为14℃、16℃,但热泵机组出口温度基本保持不变。地下水温度在休息2个月至开始供暖时正好恢复为原有的14℃温度,如此完成一年的周期性变化,达到了浅层地热能的可持续开发目标。

4 锦上添花钻成地热井

跟随京津地区近些年的“温泉热”,利用地热水操作温泉休闲、保健、、旅游、会议的经营久盛不衰,外研社在执行水源热泵项目任务时,作为锦上添花,也考虑了增加地热井开发项目。2003年夏,外研社委托北京地热工程研究所增加进行地热井钻井的可行性研究,7月可行性研究报告完成,认为在外研社具备钻成地热井的条件。外研社当机立断,立即组织地热井施工,井队9月26 日进场,施工至次年2月6 日竣工,完成了“兴热-6”井的钻井,设计钻探2600m,实际钻井按设计钻穿了第四系、第三系、寒武系及蓟县系的铁岭组和洪水庄组总厚1747.5m的覆盖层(虽其中包含部分含水层),分段下入了套管并实行水泥固井,最终裸眼钻入蓟县系雾迷山组的硅质白云岩热储层,于2601.88m终孔成井,成井抽水的出水温度51℃,出水量19.42m3/d。

这眼地热井的温度不算高,用于供暖有困难,且已有了水源热泵供暖,因此外研社利用此井建造了温泉游泳池、和健身中心,配合水源热泵工程提供的冬夏四季舒适环境,提供休闲保健服务,使国际会议中心虽然地处五环路以外的较偏僻位置,却不断吸引着各路人群络绎前来,当然也带来了源源财路。

5 结论

北京外研社国际会议中心的水源热泵工程取得了令开发者意想不到的惊喜。

(1)经过3夏2冬的实践,利用浅层地热能的制冷和供暖效果良好,提供了夏凉冬暖的舒适环境。

(2)配合建成地热井所提供的温泉休闲保健服务,进一步提升品位,常年顾客盈门,带来巨大经济效益。

(3)监测资料表明,地下温度可以在年度运行中周而复始,达到可持续利用的要求。

什么是商用中央空调?

温室大棚取暖,温室大棚用翅片管散热器可以进行制热和制冷两种不同的作用,在温室大棚中主要用于供暖使用。供暖就是需要有热源的,热源就是提供热量的一方,只有有了热量的提供,散热器才会散发热量。

翅片管散热器

温室大棚用翅片管散热器暖系统中以冷凝式的热水器以及热泵作为热源的提供者较为常见,热源提供的温度对于散热器的散热效果起着很大的作用,因为散热器的供暖遵循的是能量守恒原理。

翅片管散热器

温室大棚用翅片管散热器每组的散热器都配备了温控阀这个元件,温控阀是为了控制散发热量的多少而存在的,因此在散热器的供暖系统中温控阀是一个不可或缺的部件,尤其是在这种较大的供暖系统中。

翅片管散热器

家里装修选暖气片好还是地暖好

中央空调是指根据国家空调设计规范的设计参数和要求进行选型设计、安装的,用于建筑物的空调系统。它是一种由一台主机通过风道过风或冷热水管接多个末端的方式来控制不同的房间的温度,以达到对室内空气进行调节为目的的一种空调系统。主要由室外主机、室内风机盘管及其连接的风道等组成,按其规格可分为大型中央空调、小型中央空调和家用中央空调三种。

水源热泵相关的水源问题?

之前分析了中央空调和普通空调,咱们今天就来说说地暖&暖气片供热。而地暖又可细分为电地暖和水地暖。?

细分之后的三种方式分别是:?

1、电地暖?

2、水地暖?

3、暖气片?

1、电地暖?

优点:?

a、发热均匀,温足凉顶,中医理念提倡的最佳保健养生法。?

b、避免了空调供热最头疼的干燥问题,电地暖供热人体舒适不干燥。?

c、以100平三房两厅为例,造价在2万以内,无需任何后期维护费用。?

d、可以根据家庭人口情况进行分房间控制,想要哪里热,就哪里热。?

缺点:?

a、使用成本较高,以100平三房两厅为例,每月电费预计1000元左右。?

b、电暖盘管需占用房间层高,大约需要占用3-5公分。?

c、由于使用功率较大,需要至电力公司将家庭用电量进行增加,增容至16A。?

d、无法提供热水,需再购买热水器和小厨宝等水加热电器。?

e、所使用的发热电缆,因为是隐蔽性工程,长期使用后电缆发热热量会适度减少,若后期发生故障,维修较为困难。

f、电地暖升温比较快,能够在短时间内将室内温度升高,但不能一下子将温度调太高,容易损伤电缆元件,一般建议24小时开启。?

2、水地暖?

优点:?

电地暖发热均匀、舒适、分房间控制三项优点,水地暖同样适用。但水地暖最大优点在于,水地暖需要使用家用锅炉加热供水,有了锅炉,热水器和小厨宝都免了,冬天家用热水问题全部解决了。?

缺点:?

a、以100平三房两厅为例,造价比电地暖略高,使用费用也较大,燃气费用每月1000元左右。?

b、家用锅炉每年都需要进行维护,一般锅炉的使用寿命为8-10年,寿命到期需重新更换锅炉。?

c、水地暖需要地下盘管,运行2-4年后,管路会产生水垢,需要使用专业设备进行清洗。且存在漏水的风险,不过几率为万分之一甚至更低,但一旦漏水,维修起来很麻烦。?

d、水地暖盘管占用层高,比电地暖占用更多,大约需要占用10公分。?

e、水地暖水的比热较大,因此升温较慢,特别是初次开启,整个房屋温度上升需要很长一段时间,所以水地暖一般建议24小时开启。?

3、暖气片?

暖气片,跟水地暖相比,从造价以及使用成本、人体舒适度上面来说都不分伯仲,难分优劣。唯一的区别在于,暖气片无需占用房间层高,但占用房间面积,暖气片周边需要空出一段距离,让散热器真正起到散热作用。所以在前期设计时就需要考虑暖气片和家具的摆放位置,以免后期家具阻挡空间,影响暖气片散热效果。由于无需地下整体盘管,也不用担心漏水的风险。还有就是暖气片供热属于空气对流散热,所需供水温度较高,由于出温较高,在短时间内房间温度就开始上升,热效率非常高,希望能够在短时间内暖的用户选择暖气片暖会比较好。?

不管是地暖还是暖气片,取暖方式是萝卜青菜人各有爱,不管选择的是哪一种,结果都是:这个冬天不再冷。 ?

本回答来自好好住用户:no nick,更多装修攻略,居家经验,欢迎登陆好好住APP查看

空调按流量怎么收费?

水源是应用水源热泵的前提。文中阐述了影响水源热泵运行工效的水源系统的水量、水温、水质和供水稳定性等因素。介绍了各类水源、取水构筑物、水处理技术、回灌技术,指出了水源方案设计和施工中应注意的一些问题。

清华同方人工环境设备公司今年向市场投放了节能、环保型新产品—GHP型水源中央空调系统。国内其它厂家也有类似产品面市,如节能冷暖机、地温冷暖机,地温空调,地温热泵等。名称虽然各异,但基本同属热泵类产品。热泵能有效利用空气、水体和土壤中蕴藏的低温位热能。水源热泵系统是21世纪能源利用的最优方式之一。适合、可靠的水源是有效应用水源热泵的前提,推广利用水源热泵技术时,应注意解决好相关的水源问题。

1、水源热泵工作原理及其系统构成

热泵这一术语是借鉴水泵一词得来。在自然环境中,水往低处流动,热向低温位传递。水泵将水从低处泵送到高处利用。而热泵可将低温位热能泵送(交换传递)到高温位提供利用。在我国《暖通空调术语标准(GB50155-92)》中,对热泵的解释是能实现蒸发器和冷凝器功能转换的制冷机; 在《新国际制冷词典(New International Dictionary of Refrigeration)》中,对热泵的解释是以冷凝器放出的热量来供热的制冷系统。可见,热泵在本质上是与制冷机相同的,只是运行工况不同。其工作原理是,由电能驱动压缩机,使工质(如R22)循环运动反复发生物理相变过程,分别在蒸发器中气化吸热、在冷凝器中液化放热,使热量不断得到交换传递,并通过阀门切换使机组实现制热(或制冷)功能。在此过程中,热泵的压缩机需要一定量的高位电能驱动,其蒸发器吸收的是低位热能,但热泵输出的热量是可利用的高位热能,在数量上是其所消耗的高位热能和所吸收低位热能的总和。热泵输出功率与输入功率之比称为热泵性能系数,即COP值(Coefficient of Performance )。热泵有多种,以水作为热源和供热介质的热泵称为水源热泵。水源热泵性能系数(即COP值)高于空气源热泵,系统运行性能稳定。

水源热泵工程是一项系统工程,一般由水源系统、水源热泵机房系统和末端散热系统三部分组成。其中,水源系统包括水源、取水构筑物、输水管网和水处理设备等。

2、水源热泵对水源系统的要求

水源系统的水量、水温、水质和供水稳定性是影响水源热泵系统运行效果的重要因素。应用水源热泵时,对水源系统的原则要求是:水量充足,水温适度,水质适宜,供水稳定。具体说,水源的水量,应当充足够用,能满足用户制热负荷或制冷负荷的需要。如水量不足,机组的制热量和制冷量将随之减少,达不到用户要求。水源的水温应适度,适合机组运行工况要求。例如,清华同方GHP型水源中央空调系统在制热运行工况时,水源水温应为12—22℃;在制冷运行工况时,水源水温应为18—30℃。水源的水质,应适宜于系统机组、管道和阀门的材质,不至于产生严重的腐蚀损坏。水源系统供水保证率要高,供水功能具有长期可靠性,能保证水源热泵中央空调系统长期和稳定运行。

3、水源

原则上讲,凡是水量、水温能够满足用户制热负荷或制冷复荷的需要,水质对机组设备不产生腐蚀损坏的任何水源都可作为水源热泵系统利用的水源,既可以是再生水源,也可以是自然水源。

3.1 再生水源

是指人工利用后排放但经过处理的城市生活污水、工业废水、矿山废水、油田废水和热电厂冷却水等水源,有条件利用再生水源的用户,变废为利,可减少初投资,节约水。但对大多数用户来说,可供选择的是自然界中的水源。

3.2 自然界中的水源

自然界中的水分布于大气圈、地球表面和地壳岩石中,分别称之为大气水、地表水和地下水。陆地上的地表水和地下水均来自于大气降水。

地表水中的海水约占自然界水总储量的96.5%。滨海城市有条件利用海水,国外有应用海水作热泵水源的实例。我国一些沿海城市利用海水作工业冷却水源已有多年历史。近年,国内有用海水作热泵水源的研究,但海水水源热泵技术的实用化尚待时日。陆地上的地表水,即江、河、湖、水库水比海水和地下水矿化度低,但含泥沙等固体颗粒物、胶质悬浮物及藻类等有机物较多,含砂量和浑浊度较高,须经必要处理方可作热泵水源。

地下水是指埋藏和运移在地表以下含水层中的的水体。地下水分布广泛,水质比地表水好,水温随气候变化比地表水小,是水源中央空调可以利用的较为理想的水源。

3.3 水量与水源的选择

水量是影响水源热泵系统工作效果的关键因素,一项工程所需水量多少由该工程负荷与机组性能确定,所选择的水源水量应满足负荷要求。如果其他各种条件均具备,但水量略有不足,其缺口可取一定弥补措施解决。如水量缺口较大,不能满足负荷要求,就应考虑其他方案。 就某项具体工程而言,应从实际情况出发,判断是否具备可利用的水源。不同工程的场地环境和水文地质条件千差万别,可利用的水源各不相同,应因地制宜地选择适用水源。当有不同水源可供选择时,应通过技术经济分析比较,择优确定。

4、水质

自然界中的水处于无休止循环运动中,不断与大气、土壤和岩石等环境介质接触、互相作用,使其具有复杂的化学成分、化学性质和物理性质。应用水源热泵时,除应关源水量外,还应关注水的温度、化学成分、浑浊度、硬度、矿化度和腐蚀性等因素。但是,目前对水源热泵所用水源的水质尚无有关规定,本文所提数据参考了冷却水水质标准和某些地下水回灌水质的有关规定。

4.1 温度

地表水水温 随季节、纬度和高程不同而变化。长江以北和高原地区,冬季地表水结冰,无法利用于制热供暖。夏季水温一般低于30℃,可用于制冷空调。

地下水水温 随自然地理环境、地质条件及循环深度不同而变化。近地表处为变温带,变温带之下的一定深度为恒温带,地下水温不受太阳辐射影响。不同纬度地区的恒温带深度不同,水温范围10—22℃。恒温带向下,地下水温随深度增加而升高,升高多少取决于不同地域和不同岩性的地热增温率。地壳平均地热增温率为2.5℃/100m,大于这一数值为地热异常。富含地下水的地热异常区可形成地热田。据19年统计数字,全国已发现地热点3200多处,开发利用130 处地热田,年开地热水3.45亿m3。目前,许多地热用户排放弃水温度较高(约40℃)。应用水源热泵可使弃水中的30℃温差得到再利用,大大提高地热能利用率。

4.2 含砂量与浑浊度

有些水源含有泥沙、有机物与胶体悬浮物,使水变得浑浊。水源含砂量高对机组和管阀会造成磨损。含砂量和浑浊度高的水用于地下水回灌会造成含水层堵塞。用于水源热泵系统的水源,含砂量应<1/20万,浑浊度<20毫克/升。如果水源热泵系统中装有板式换热器,水源水中固体颗粒物的粒径应<0.5毫米。

4.3 水的化学成分及其化学性质

自然界水中溶有不同离子、分子、化合物和气体,使得水具有有酸碱度、硬度、矿化度和腐蚀性等化学性质,对机组材质有一定影响。

酸碱度 水的pH值小于7时,呈酸性,反之呈碱性。水源热泵的水源pH值应为6.5-8.5。

硬度 水中Ca2+、Mg2+总量称为总硬度。硬度大,易生垢。水源热泵水源水中的CaO含量应<200 mg/L。

矿化度 单位容积水中所含各种离子、分子、化合物的总量称为总矿化度,用于水源热泵系统的水源水矿化度应<3g/L。

腐蚀性 水中Cl-、游离CO2等都具腐蚀性,溶解氧的存在加大了对金属管道的腐蚀破坏作用。应用水源热泵系统时,对腐蚀性、硬度高的水源,应在系统中加装抗腐蚀的不锈钢换热器或钛板换热器。

5、取水构筑物

从水源地向水源热泵机房供水,需建取水构筑物。依据水源不同,取水构筑物可分为地表水取水构筑物和地下水取水构筑物两类。

5.1 地表水取水构筑物

按结构形式地表水取水构筑物可分为活动式和固定式两种。活动式地表水取水构筑物有浮船式和活动缆车式。较常用的是固定式地表水取水构筑物,其种类较多,但一般都包括进水口、导水管(或水平集水管)和集水井,地表水取水构筑物受水源流量、流速、水位影响较大,施工较复杂,要针对具体情况选择施工方案。

5.2 地下水取水构筑物

地下水取水构筑物有管井、大口井、结合井、辐射井和渗渠等类型,表1列出了地下水取水构筑物的型式及适用范围[1]。在实际工程中,应根据地下水埋深、含水层厚度、出水量大小、技术经济条件不同选取不同形式。

5.3 管井

地下水取水构筑物中最常见的型式是管井,一般由井孔、井壁管、滤水管、沉砂管组成。井孔用钻机钻成,井壁管安装在非含水层处,用以支撑井孔孔壁,防止坍塌,井管与孔口周围用粘土或水泥等不透水材料封闭,防止地面污水渗入;滤水管安装在含水层处,除有井壁管作用外其主要作用是滤水挡砂;井管最底部为沉砂管,用以沉积水中泥沙,延长管井使用寿命。 6、水源系统设计和施工中应注意的问题

6.1 供水水源的可行性研究

拟用水源热泵系统时,应先调查工程场地的供水水源条件,向当地水管理部门咨询或请专业队伍进行必要的水文地质调查或水文地球物理勘查,了解是否有适合水源热泵利用的水源,通过可行性研究,确定利用地表水或是地下水的供水水源方案。

6.2 地表水源工程设计与施工

当选用地表水源时,设计取水量要考虑水温因素和需水量的保证率,取水构筑物标高与洪水季节水位的关系。施工应同时考虑供水管和排水管的布置。

6.3 管井工程设计和施工

拟选择地下水源和管井取水方案时,对规模较大的工程,应根据所需水量和地下水回灌需要,结合场地环境和水文地质条件,按一定灌比确定抽水井和回灌井井数、合理布置井位和井间距。井深应大于变温带深度,以保证冬季水源水温度>10℃。为防止回灌井堵塞,确保水源系统长期稳定供水,抽水井和回灌井应互相切换使用,因此各个井的井深和井身结构应相近。井中滤水管和滤网应有一定强度,能承受抽灌往复水流的压力变换。

6.4 管井施工质量

必须十分重视管井质量问题。应找专业队伍施工,做好每一工艺环节,建成优质井,才能获得较大出水量和优质水。一口优质井可以使用二十多年。成井质量不好,不仅影响井的寿命,还影响到取水和回灌效果,最终影响水源热泵正常工作和制热或制冷效果。甲方应参与最后阶段的抽水试验工作,认定可信和准确的抽水试验结果数据。管井竣工后,应由甲方、施工单位和行政主管部门或监理会同到现场,按合同规定的水量、水温和水质进行工程质量验收。

表1. 地下水取水构筑物的形式及适用范围

形式

尺 寸

深 度(m)

适 用 范 围

出 水 量 (m3/d)

地下水类型

地下水埋深

含水层厚度

水文地质特征

管井

井径50—1000mm150—600mm

井深20—1000m,常用300m以内

潜水,承压水,裂隙水,溶洞水

200m以内,常用在70m以内

大于5m或有多层含水层

适用于任何砂、卵石、砾石地层及构造裂隙、岩溶裂隙地带

单井出水量500-6000m3/d,最大可达2-3万m3/d

大口井

井径2—10m,常用4—8m

井深在20m以内,常用6—15m

潜水,承压水

一般在10m以内

一般为5-15m

砂、卵石、砾石地层,渗透系数最好在20m/d以上

单井出水量500-1万m3/d,最大为2-3万m3/d

辐射井

集水井直径4—6m,辐射管直径50-300mm,常用75—150mm

集水井井深3—12m

潜水,承压水

埋深12m以内,辐射管距降水层应大于1m

一般大于2m

补给良好的中粗砂、砾石层,但不可含有飘砾

单井为5000—5万m3/d,最大为3.1万m3/d

渗渠

直径为450—1500mm,常用为600—1000mm

埋深10m以内,常用4—6m

潜水,河床渗透水

一般埋深8m以内

一般为4—6m

补给良好的中粗砂、砾石、卵石层

一般为10—30m3/d.m,最大为50--100m3/d.m

7、水质处理与节水技术

7.1 水处理技术

如果水源的水质不适宜水源热泵机组使用时,可以取相应的技术措施进行水质处理,使其符合机组要求。在水源系统中经常用的水处理技术有以下几种:

除砂器与沉淀池 当水源水中含砂量较高时,可在水源水管路系统中加装旋流除砂器,降低水中含砂量,避免机组和管阀遭受磨损和堵塞。国产旋流除砂器占地面积较小,有不同规格,可按标准处理流量选配除砂器型号和台数。如果工程场地面积较大,也可修建沉淀池除砂。沉淀池费用比除砂器低,但占地面积大。

净水过滤器 有些水源,浑浊度较大,用于回灌时容易造成管井滤水管和含水层堵塞,影响供水系统的稳定性和使用寿命。对浑浊度大的水源,可以安装净水器进行过滤。

电子水处理仪 在水源中央空调系统运行过程中,冷凝器中的循环水温度较高,特别是在冬季制热工况下,水温常常在50℃以上,水中的钙、镁离子容易析出结垢,影响换热效果。通常在冷凝器循环水管路中安装电子水处理仪,防止管路结垢。

板式换热器 有些水源矿化度较高,对金属的腐蚀性较强,如直接进入机组会因腐蚀作用减少机组使用寿命。如果通过水处理的办法减少矿化度,费用很大。通常用加装板式换热器中间换热的方式,把水源水与机组隔离开,使机组彻底避免了水源水可能产生的腐蚀作用。当水源水的矿化度小于350mg/L时,水源系统可以不加换热器,用直供连接。当水源水矿化度为350-500mg/L时,可以安装不锈钢板式换热器。当水源水矿化度>500mg/L时,应安装抗腐蚀性强的钛合金板式换热器。也可安装容积式换热器,费用比板式换热器少,但占地面积大。

除铁设备 水源中央空调系统也可以用来供应生活热水。但有时水源水中含铁较多,虽然对制热没有影响,洗浴时对人体健康也不会造成损害,但溶于水中的铁容易生成氢氧化铁沉淀在卫生洁具上,形成有碍视觉感官的褐色污渍。当水中含铁量>0.3 mg/L时,应在水系统中安装除铁处理设备。

7.2 节水节电技术

水源热泵空调系统的水费和井泵运行费往往是工程系统运行费的最大开支,为合理有效利用水源,减少水源浪费和节约电费,在系统设计中应考虑用节水和节电技术措施。

混水器 为节约水源水用量,可在系统中安装混水设备,一般用容积式混水器,也可用射流式混水器。前者体积大费用低,后者体积小费用高。

变频调速器 为节约水源水量和电量,可以安装变频调速器控制水源水泵,取得减少耗水量和耗电量的效果。

8、地下水人工补给(俗称回灌)[2]

8.1 人工回灌及其目的

所谓地下水人工补给(即回灌),就是将被水源热泵机组交换热量后排出的水再注入地下含水层中去。这样做可以补充地下水源,调节水位,维持储量平衡;可以回灌储能,提供冷热源,如冬灌夏用,夏灌冬用;可以保持含水层水头压力,防止地面沉降。所以,为保护地下水,确保水源热泵系统长期可靠地运行,水源热泵系统工程中一般应取回灌措施。

8.2 回灌水的水质

目前,尚无回灌水水质的国家标准,各地区和各部门制定的标准不尽相同。应注意的原则是:回灌水质要好于或等于原地下水水质,回灌后不会引起区域性地下水水质污染。实际上,水源水经过热泵机组后,只是交换了热量,水质几乎没发生变化,回灌不会引起地下水污染。

8.3 回灌类型

根据工程场地的实际情况,可用地面渗入补给,诱导补给和注入补给。 注入式回灌一般利用管井进行,常用无压(自流)、负压(真空)和加压(正压)回灌等方法。无压自流回灌适于含水层渗透性好,井中有回灌水位和静止水位差。真空负压回灌适于地下水位埋藏深(静水位埋深在10米以下),含水层渗透性好。加压回灌适用于地下水位高,透水性差的地层。对于抽灌两用井,为防止井间互相干扰,应控制合理井距。

8.4 回灌量

回灌量大小与水文地质条件、成井工艺、回灌方法等因素有关,其中水文地质条件是影响回灌量的主要因素。一般说,出水量大的井回灌量也大。在基岩裂隙含水层和岩溶含水层中回灌,在一个回灌年度内,回灌水位和单位回灌量变化都不大;在砾卵石含水层中,单位回灌量一般为单位出水量的80%以上。在粗砂含水层中,回灌量是出水量的50-70%。细砂含水层中,单位回灌量是单位出水量的30-50%。灌比是确定抽灌井数的主要依据。

8.5 回扬

为预防和处理管井堵塞主要用回扬的方法,所谓回扬即在回灌井中开泵抽排水中堵塞物。每口回灌井回扬次数和回扬持续时间主要由含水层颗粒大小和渗透性而定。在岩溶裂隙含水层进行管井回灌,长期不回扬,回灌能力仍能维持;在松散粗大颗粒含水层进行管井回灌,回扬时间约一周1—2次;在中、细颗粒含水层里进行管井回灌,回扬间隔时间应进一缩短,每天应1—2次。在回灌过程中,掌握适当回扬次数和时间,才能获得好的回灌效果,如果怕回扬多占时间,少回扬甚至不回扬,结果管井和含水层受堵,反而得不偿失。回扬持续时间以浑水出完,见到清水为止。对细颗粒含水层来说,回扬尤为重要。实验证实:在几次回灌之间进行回扬与连续回灌不进行回扬相比,前者能恢复回灌水位,保证回灌井正常工作。

9、应用水源热泵的限制条件

水源热泵中央空调系统是一种高效、节能、环保型产品,但并不是在任何条件下都可以应用。其制约条件是电源和水源。目前,我国电力供应较充足,容易解决。而水源则是其主要限制条件,没有适合可靠的水源,就不能使用水源热泵。例如有些工程规模大,制冷或制热负荷大,所需水源水量很多,虽然工程场地有一定面积,也可以钻井,但因水量不足,难以完全满足工程负荷需要。有些工程所在场地下面虽然有地下水,但是由于该工程地处繁华市区,场地面积狭小,无处布井取水,场地环境条件限制了水源热泵系统的应用。

10、水源热泵应用工程实例

10.1 工程概况

为治理北京大气污染,北京市地质勘察技术院承担完成了地热加水源热泵供暖示范工程项目。该工程平面示意图见图1,冬季供暖的办公楼和家属楼共6幢,建筑面积约3万平方米,砖混结构,原暖通设计为燃煤锅炉供暖,末端为单管串联上送下回系统,铸铁四柱813型暖气片。示范工程热源为地热井,水温68℃,水量125m3/h,两眼45m浅层第四系水井,水温16℃,单井出水量50 m3/h ,井间距100m。

图1 地热热泵供暖工程平面图

图2 地热加水源热泵供暖工艺流程示意图

该工程因地热钻探施工周期限制,供暖试验分两期进行。工程流程示意图见图2。一期工程从1999年12月5日至2000年3月8日,以16℃地下水为热源,利用水源热泵对五层综合办公楼进行供暖试验。该楼建筑面积4078m2,建筑高度18m,三七墙,单层玻璃窗。供暖前,对运行14年之久的暖气管路进行了化学清洗,更换了部分锈损暖气片。为对比供暖效果和夏季进行制冷,在一、二层办公楼加装了风机盘管。由1号井抽出的16℃地下水送入热泵机组蒸发器吸热后由2号井回灌入地下,保护地下水源。热泵输出的52℃热水对办公楼供暖。

二期工程自2000年3月8日(地热井竣工)至4月5日,进行了地热加水源热泵供暖运行试验。地热井68℃地热水对2.5万 m2建筑进行一次供暖,部分地热水经过板换温度降至13℃后作为弃水排放,板换冷侧端的循环水经热泵热能转换后输出52℃热水对办公楼进行供暖。2000年夏季,利用1、2号抽、灌井和水源热泵机组对办公楼进行了制冷空调。

10.2 主要技术参数

热泵主机:清华同方人工环境设备公司生产的GHP型水源中央空调系统,1台,名义制热量360kW,制冷量275 kW,装机功率64 kW,制热工况下冷凝器出/回水温度52℃/42℃,制冷工况下蒸发器出回水温度7℃/12℃,制热/制冷工况切换由水管路阀门组开关实现。板式换热器:BR0.24Ⅶ型1台,12 m2,300 kW,40-13/10-15℃,不锈钢材质。冷水潜水泵:QJ50-50/6 型2台,流量50m3/h,扬程50m,功率7.5kW。南院暖气循环泵:ISG型80-160,3台,流量50 m3/h,扬程32 m,功率7.5 kW。冷水循环泵:DFB80-32B型2台,流量42 m3/h,扬程24m ,功率5.5kW。

10.3 运行效果

冬季供暖,水源热泵连续运行126天,性能稳定,以供回水温度(52/42℃)控制压机启停,平均每小时耗电40度,冷水井水源用量18 m3/h,室外气温-10 ℃时,多数房间室温18℃,供暖系统末端少数房间15-16℃,安装了风盘的房间室温可达20-25℃。夏季制冷,水源热泵连续运行120天,以冷冻水回水温度(12℃)控制压机启停,室外气温33-40 ℃,室内温度22-26℃。

参考文献:

[1] 供水水文地质手册,地质出版社,16。

[2] 汪光焘 主编,城市节水技术与管理,1994

更多关于工程/服务/购类的标书代写制作,提升中标率,您可以点击底部客服免费咨询:s://bid.lcyff/#/?source=bdzd

水空调冬天能制热吗?

空调按流量收费标准如下:

1、量收费,必须有相应的计量器具和计量方法,按计量方法的不同,目前中央空调的收费计量器具可分为直接计量和间接计量两种形式。

直接计量形式的中央空调计量器具主要是能量表。根据能量守恒原理,中央空调对空间的热交换量与其介质中的能量变化量相等,能量表就是通过直接计量中央空调介质(冷冻水)的能量变化量来实现对中央空调的量化,其工作原理是依据物质的热交换能量计算热力学公式Q=∫cΔTV=∫c(T2-T1)qt。

(能量表)由带信号输出的流量计、两只温度传感器和能量积算仪三部分组成,它通过计量中央空调介质(冷冻水)的某系统内瞬时流量、温差,由能量积算仪按时间积分计算出该系统热交换量。这种中央空调计费方式原理明确,结果直观,易於理解。

由於它要计量多个参数,特别是对温差的精度要求较高,所以其生产成本较高,同时改变中央空调的系统设计和要求水质,普遍用受到制约,主要用在分层、分区的中央空调计费上。

2、在中央空调直接计费因价高昂和应用不便而无法为用户所接受,又出现了一些简单、便宜的间接计费方法。比如:电表计费,热水表计费等。

电表计费就是通过电表计量用户的空调末端的用电量作为用户的空调用量依据来进行收费的;热水表计费就是通过热水表计量用户的空调末端用水量作为用户的空调用量依据来进行收费的。

计时计费就是通过计量器计量用户空调末端的使用时间、同时参考空调末端能力作为用户的空调用量依据来进行收费的,相对於电表计费、热水表计费来说,根据用户的使用时间计费变得更加直观。

3、CFP系列中央空调计费系统是最新一代以风机盘管为计费对象的中央空调计量器具,它是郑州春泉暖通节能设备有限公司首创的“有效果计费”原则和“计时计费”法的结晶,包括CFP计费器、CRS485-D区域管理器、CJ-W98管理软件和CJ-2000计费主机四部分。

根据物质的热交换能量计算热力学公式Q=∫cΔTV=∫c(T2-T1)qt,中央空调风机盘管的流量q基本是定值,时间t我们可以通过计时器计量,温差(T2-T1)是技术的关键点。

物质的热交换有传导、对流和辐射三种方式,中央空调风机盘管的热交换主要是通过传导来实现的,不存在对流,并且辐射也可忽略不计,传导量与温差和换热面积成正比,风机盘管的换热面积又与风量v成正比。

在标况(供水温度T1=7℃;回水温度T1=12℃)下,中央空调风机盘管的热交换量计算公式Q=∫cΔTV=∫c(T2-T1)qt可变为Q=∫Xvt,(v:风速系数;X:型号能力系数;t:使用时间)。根据模糊理论,我们将供水温度T1≤12℃或T≥40℃,基本能满足用户正常使用要求的情况作为有效计量收费;

供水温度T112℃空调使用效果较差的时间作为损耗进入成本,不收取用户费用,这就是“有效果“计费原则。CFP系列中央空调计费系统不仅计量了中央空调的“量”(用户使用时间),关键在于计量的是中央空调的“质量”(有效果时间)!

较好的解决了中央空调计费的合理性,确保作为商品的中央空调“用冷量”具有实用性,满足用户正常使用要求,较好的保障了用户的权益。

同时其将供水温度T112℃或T40℃,空调使用效果较差的时间作为损耗处理,费用计入中央空调运行成本,符合物业管理收费原则。

它良好的适用性对于中央空调系统的设计、安装无任何特殊要求,较小的投资成本满足了用户的需求,已广泛应用于以风机盘管为末端的住宅楼、写字楼中。该系统具有对用户的空调进行计费、查询、欠费禁用等管理功能。

CFP系列中央空调计费系统的计费误差经过系统内二次分摊后已达到中央空调计量精确度要求。2002年10月20日,CFP系列中央空调计费系统取得国家计量器具型式批准,CFP中央空调计费系统是目前唯一国家主管部门批准中央空调专用计量器具。

北京市昌平区某地源热泵供暖、制冷设备改造项目

水空调冬天能制热。

水空调又被称为水冷式空调,使用地下水做为循环,地下15米左右的水温通常是18度左右,夏天里用水泵把水抽上来,经过室内的风机盘管来达到制冷目的,回水经管道流回地下。冬天这样循环可以达到制热目的。

市面上普通空调,每小时用电量在1.2千瓦时左右,而"水空调"一天的用电量也只有0.5千瓦时。由于这种空调会对地下水造成浪费,因此国家不提倡使用这种空调。

利用水循环的冷气,也就是俗称的"水空调",既节省 电能也比普通空调舒适度高。"水空调"技术一旦成熟,市场普及率上升,对于传统的空调是一个致命的打击。如何在安全清凉的环境中顺利的度过盛夏,是所有城市居民的期盼。在没有办法逃离酷暑之地的情况下,电风扇、空调成了必需品。但是电风扇在高温时刻不能完全解决问题,而空调带来的空调病依然影响着人们的身体健康。利用简单的水泵技术的"水空调"在中国市场已经出现了十多年。这种耗电量等同于电风扇的用电量,却有着和普通空调一样制冷效果的"水空调"。虽然几年前淡出市场,2006年夏再次浮出市面。由于推广和技术等因素,"水空调"的普及率低级,覆盖面积只是在一些南方的中小城市。

"水空调"的出现,优势尽显,可是"水空调"利用的水技术却给它带来了限制。记者发现,市面上的"水空调"水方式分为三种:地下水集、江河水集、污水集。

而这三种水方式都存在技术难以解决的隐患,首先来看使用地下水的空调,又被称为"地温水空调"。这种"水空调"是利用地下水的温度循环到室内,从而达到降温的效果。可是记者访中,有专业人士告知以2.5匹的"水空调"为例,每装一台就必须打一眼深10-20米的水井以供抽水。通过风机循环后的地下水,大部分直接排入下水道流失。

1.项目简介

工程地点位于北京市昌平区城南,现有总建筑面积1万m2,其中办公室、餐厅、客房及其他附属建筑的总建筑面积8400m2,临时宿舍面积约1600m2,建筑物分散且使用功能多样,建筑物最高层数为三层。原先用燃油锅炉供暖,分体式空调制冷,由于燃油锅炉已到使用年限,需要更新。

经前期水文地质勘察,工程地点位于温榆河上游支流东沙河形成的小冲洪积扇下部,地层以粘砂,粘砂为主,含水层岩性以中粗砂为主,厚度不超过15m,富水性较差,单井出水量在500m3/d左右,回灌量一般只有抽水量的30%。因此,当地水文地质条件不适宜用地下水地源热泵技术,根据项目场区绿地、公共道路面积较大的特点,地质勘察部门推荐用地埋管地源热泵技术实现冬季供暖和夏季供冷。

根据中国建筑技术集团有限公司提供的工程设计图纸计算,空调系统热负荷为618kW,冷负荷为773kW。

项目于2005年8月开工建设,同年11月正式完工,工程总投资约440万元。工程主要设备见表6-1,工程主要设备统计表。需要指出的是,由于主机及循环泵耗电量均单独计量,为项目经济性分析打下了基础。

表6-1 工程主要设备统计表

项目共计施工了183个100m深地埋管孔,下入了单U,PE管后,全孔以中粗砂回填密实,水平集管为φ50,PE管,埋深1.5m以下,共分为33路与机房的分集水缸相连。所有钻孔均布置在场区绿地和停车场地面下,见场区地埋管孔分布图6-1。

图6-1 场区地埋管孔分布图

2.所选项目的典型特点及代表性

项目的典型特点也是该项目被选中的理由,项目具有以下五项特点:

1)单独供暖、制冷项目

该项目单独供暖、制冷项目,未有任何冷、热源(如冰蓄冷、电加热和冷却塔等),便于分析地源热泵项目的经济性。

2)改造项目

该项目为改造项目,原有供暖方式为燃油锅炉供暖,制冷方式为分体式空调供冷。因此,项目运行后可以直接的进行方案经济性对比。

3)方案选择合理,总体设计合理、施工难度适中;

项目用地埋管地源热泵技术与当地水文地质条件相符;项目总体设计由中国建筑技术集团有限公司完成,设计方案合理;项目开工前,北京市地质工程勘察院进行了前期勘察和打孔试验,施工难度适中。

4)项目运行后,各项监测记录完整

项目业主内部管理认真负责,对各项重要数据监测完整,记录详实,有利于进行技术和经济分析。

5)项目功能、使用程度适中

项目建筑主要为办公室、住宅、旅馆等,均为普通建筑物,有别于场馆、游泳池、大棚等,使用程度为整个供暖季全天24小时,有别于学校等间歇性供暖单位。

由于该项目具有上述特点,在众多的已建项目中具有一定程度代表性。因此,其经济性分析结果将客观的反映出已建项目的经济性。

3.项目的经济评价

项目的经济评价依据《国家发改委、建设部关于印发建设项目经济评价方法与参数的通知》(发改投资〔2006〕1325号文)执行。评价内容依据文件中的三个附件:《关于建设项目经济评价工作的若干规定》、《建设项目经济评价方法》和《建设项目经济评价参数》执行。

为解决冬季供暖问题,业主有两种选择方案:

方案一:更新燃油锅炉,继续用燃油锅炉供暖;

方案二:用地埋管地源热泵供暖。

根据本项目的特点,经济评价方法拟用费用效果分析法。费用效果分析系指通过比较项目预期效果与所支付的费用,判断项目费用有效性或经济合理性。效果难于或不能货币化,或货币化的效果不是项目目标的主体时,在经济评价中用费用效果分析法,其结论作为项目投资决策的依据之一。其中,费用效果分析中的费用系指为实现项目预定目标所付出的财务代价或经济代价,用货币计量。费用效果分析法遵循多方案比选的原则,所分析项目应满足下列条件:

(1)备选方案不少于两个,且为互斥方案或可转化为互斥型方案;

(2)备选方案有共同的目标;

(3)备选方案的费用应能货币化;

(4)备选方案应具有可比的寿命周期。

(5)效果应用同一非货币计量单位衡量。

根据上述要求,对项目用费用效果分析法的适应性进行分析:

(1)本项目备选方案有两个,为互斥方案,也就是只能用方案一、二中的其中一个;

(2)项目有共同的目标:实现冬季供暖,据现有的暖通空调技术两种方案效果均能满足要求,且效果难于货币化。

(3)两种方案费用(也就是成本)均能够货币化,均为初投资和运行成本。

(4)方案一燃油锅炉的使用寿命为8年,每8年增加锅炉费用为50万元;方案二地源热泵主机的使用寿命为15年,每15年增加主机费用60万元,地埋管使用寿命为50年计算。

(5)由于未对末端建筑物进行改造,可以认为两种方案热负荷相等,供暖效果一致。需要指出的是:方案二还可实现夏季制冷,且淘汰了普通分体式空调机,因此方案二效果明显大于方案一,但为评价工作便利,将方案一、方案二效果概化相同。

通过上述适应性分析,因此可以确定费用效果分析法适用于本项目的经济评价。

方案一、方案二的费用均由初投资和运行成本构成。下面将两种方案的初投资和运行成本进行对比。

1)方案一

初投资:

方案一初投资由购置燃油锅炉、更新附属陈旧设备及管线、安装调试费用构成,投资金额约为50万元,见表6-2(数据为业主提供)。

表6-2 方案一初投资表

运行成本:

冬季运行成本由业主根据多年实际运行数据提供,主要由柴油、循环泵耗电量、人工成本构成,见表6-3。

表6-3 方案一冬季运行成本统计表

2)方案二

初投资:

业主用方案二的实际初投资金额为440万元(含施工和设计),主要为主机购置和安装、地埋管孔施工、风机盘管购置和安装、外管线施工等。工程由北京市地质工程勘察院2005年8月至11月施工完成。

运行成本:

方案二已实际运行了两个供暖季,分别为2005~2006年和2006~2007年供暖季,运行成本主要为主机、循环泵、风机盘管实际耗电量,详见表6-4。

表6-4 方案二实际耗电量统计表

两种方案的初投资和运行成本比较见图6-2和6-3。

图6-2 方案一、方案二初投资比较图

图6-3 方案一、方案二运行费用比较图

方案一初投资较小,但运行成本高昂,方案二初投资大,但运行成本低廉,为科学评价两种方案,根据费用现值(PC)和费用年值(AC)来计算,其前提是:

定在评价周期内,柴油、电费、人工成本等单价保持不变;

根据方案一,燃油锅炉的使用寿命为7-8年,每7-8年增加锅炉费用为50万;根据方案二,地源热泵主机的使用寿命为15年,每15年增加主机费用60万,地埋管使用寿命为50年计算;

定在计算周期内,银行折现率保持不变;

(1)项目费用现值(PC)计算公式见式6-1。

北京浅层地温能

式中:(CO)t——第t期现金流出量;

n——计算期;

i——折现率,按年4%计算;

(P/F,i,t)——现值系数 。

经计算,方案一、方案二费用现值见表6-5,需要说明的是,计算过程中在运行的第7年,第15年,第22年,第30年,因燃油锅炉使用寿命到期,各增加锅炉费用为50万。同样,在运行的第15年,第30年,地源热泵主机的使用寿命到期,各增加主机费用60万。

表6-5 项目投资方案费用现值表 单位:万元

由表6-5可以看出,在定两种方案供暖效果一致的情况下(也就是未考虑方案二可以夏季使用的情况和方案二的环保、安全效益),在运行后的第5年,方案一的费用现值458.31万元,而方案二的费用现值629.83万元,方案二高于方案一171.52万元,而第10年方案二低于方案一47.58万元,在第15年,20年,25年,30年方案二的费用现值低于方案一越来越多,逐步显示出方案二的优越性。

经计算,两方案约在运行后第8.5年费用现值相等,见方案一、二费用现值对比图6-4,从图中可以看出在第15年和第30年,两种方案均更新设备后,也就是两种方案均处于新的工作状态,方案二的费用现值仍低于方案一显示出方案二的优势。

图6-4 方案一、方案二费用现值对比图

(2)费用年值(AC)计算公式见见式6-2。

北京浅层地温能

式中:(A/P,i,t)——资金回收系数 ;其他符号同前。

经计算,两种方案费用年值表见表6-6。

表6-6 项目投资方案费用年值表 单位:万元

从表6-6同样可以看出,方案二的费用年值在前期较方案一高,随着时间推移,方案二的经济效益逐渐显现出来。

两种方案费用年值对比见图6-5,从图中可以看出在第15年方案一的费用年值为102.37万元,而方案费二用年值为85.33万元,节省17.04万元,第30年节省29.56万元。

图6-5 方案一、方案二费用年值对比图

因此,综合上述分析可以得出结论:利用费用效果分析方法,在定燃油锅炉方案和地源热泵方案效果一致的情况下,地源热泵方案在运行后约第8.5年以后优于燃油锅炉方案,并且时间越长,经济性越明显。实际上,地源热泵方案效果要优于燃油锅炉方案,因为地源热泵方案还可以夏季使用,并且与燃油锅炉相比,其还具有环保、安全等诸多间接效益。

本项目地源热泵单位面积供暖成本较高(41元/m2),但与燃油锅炉相比(88.19元/m2),还是节省了一半的运行成本。地源热泵运行成本偏高的原因是:

(1)循环泵耗电量过大。

根据统计结果,项目冬季运行时循环泵所耗电量占总耗电量的36%,在夏季运行时循环泵所耗电量占总耗电量的45%,明显高于一般项目。

原因一是:末端建筑分散,导致循环泵设计功率大(22kW)。经实际调查,项目大多数建筑物只有一层,且分布分散,南北相距320m,东西距120m,见图6-6。

原因二是:项目共施工地埋管孔183个,由于场地限制,地埋管孔分布分散,且距主机房较远,导致地埋侧循环泵功率大(22kW)。

图6-6 项目建筑物及连接管线分布示意图

原因三是:循环泵均未安装变频装置,也就是说只要主机运行,循环泵就消耗44kW·h电量,这在供暖初期和末期明显不经济。

原因四是:项目单孔换热能力设计为22w/m,与一般项目相比明显偏低,导致项目初投资偏大和地埋侧循环泵功率偏大。

(2)项目供暖期长达5个月。

因项目位于昌平区,天气较城区寒冷,供暖时间长达5个月,较正常供暖时间多出一个月。

(3)项目电价偏高,未实现峰谷电价。

项目业主实际缴纳的电费为0.79元/kW·h,由于地源热泵项目运行成本基本就是供电成本,电价偏高直接导致供暖成本增加。由于冬季供暖时,主机耗电量主要集中在晚上,但项目未实行峰谷电价,优势未体现出来。

(4)项目建筑为轻体房,保温性能较差,导致负荷偏大,增加了主机的耗电量。

针对上述问题和不足,提出了优化方案和建议:

(1)用分散式机房和自动变频控制。

针对项目建筑物分散和地埋管孔分散的实际情况,建议用分散式机房,提高系统的COP值,这在建筑物分散且服务面积较大的项目中用尤其显得重要。

用自动变频控制是降低能耗的有效方法,但应注意流速降低后,最远端建筑的供暖效果,或将循环泵在扬程不变情况下,用两台小流量(原泵流量的一半)循环泵,然后根据实际情况控制循环泵开启的数量。

如果最远端建筑物面积较小,建议用其他方式供暖。本项目最远端为一加油站,服务面积仅30m2左右,但为了给其供暖不但增加了管径,也增大了循环泵功率,从经济上讲不如直接用两用空调更为节省。

(2)加强管理制度。

主机耗电量是根据末端负荷确定的,负荷降低能够直接降低运行成本。因此,用有效的管理制度降低末端负荷将节省运行成本。如:夜间将办公室温度控制在5℃左右,白天在宿舍无人时将宿舍温度适当降低等灵活措施将能够有效降低运行成本。

项目供暖时间长达5个月,在供暖的初期和末期根据天气情况,适当开停主机也是节能非常重要的措施。

(3)建议有关部门扩大峰谷电价适用范围。用峰、谷电价,再加上储热、储冷装置利用夜间电价较低时储热或储冷,然后在白天循环使用,将能够有效节省运行成本。

(4)加强研究和监测,根据地埋侧供回水温度适当调整地埋侧循环泵功率和型号,将有进一步节能空间。并且,监测数据将作为今后其他工程重要的设计参数(单延长米换热能力)。