1.风机盘管清洗的益处?

2.汽车前排能改空调出风口位置吗

3.风机盘管和空调机组在使用中有什么区别?

4.北京海剑大厦地下水源热泵系统工程介绍

5.风机盘管分类选型应用及故障排除?

6.空调系统末端设计步骤

7.集体中央空调改装家用空调

风机盘管装修_北京风机盘管改造

纳优科技已先后研制开发出五大系列共九个XRF产品,根据产品特性分为企业通用类、精准实验类、大型集团客户专供类和国家专供类四大类别,帮助科研机构和企业未雨绸缪应对环保趋势,让企业在应对环保趋势潮流中永远快人一步!了解详情可登录纳优科技华南营销服务中心网。

风机盘管清洗的益处?

陈建平

(北京市国土局)

摘要:2008年北京奥运,引发了一场绿色革命,国人对改善环境保护环境的意识空前提高,并已成为一项十分重要的自觉行动。为了实现绿色奥运,北京市取措施,大力发展清洁能源。地热是一种良好的清洁能源,本文重点对深层地热和浅层地热及其利用进行积极的探讨。

引言

北京市开发利用地热(温泉)历史悠久,利用地热进行暖已经多年。1999年时,为了改善环境、支持申奥,大力改善能源结构,地热等清洁能源的利用被列入了城市能源发展规划,得到重视。在市地热暖示范工程顺利进行的同时,浅层地温的利用、研究,在北京地区取得了重大进展。低温地热的梯级利用技术研究项目取得的成果,进一步扩大了地热利用的范围。

深层地热:指传统意义上的地热,国际规范温度大于25℃。地热有多种形态,其中地热水是集“热、矿、水”三位一体的宝贵的自然,是一种清洁可持续利用的能源。北京工业大学、郭庄北里、北京地质勘察技术院等地热暖示范工程的试验成功,对改善能源结构、发展可再生能源,将产生积极的意义和影响。暖示范项目在地热回灌与地热热泵技术的应用上,以及地热保护与梯级利用、综合利用技术方面,也具有十分重要的意义。

示范工程试点之一的崇文区郭庄北里小区,6栋居民楼数万平方米的建筑用地热暖,彻底解决了该小区由于历史原因造成的20多年没有供暖的问题,实现了地热暖多级换热、全封闭循环、热泵技术应用、地热暖尾水100%回灌的试验目标,有效保护了地热。项目的试验的成功,受到市的高度重视。

浅层地热:是低温地热能的另一种形式,它涉及从地下常温层以下至一定深度以内(北京地区约为150m以浅)的浅层地热,包括土壤中和地下水中的热能等,大大地拓展了地热应用的范畴。在地下恒温层以上(特别是接近地表)的土壤地层中,还包含太阳能辐射到地表所形成的热能,优点是利用中操作简单、投入较少,但这部分辐射热能受外界条件的影响较大,不很稳定,其热能利用的效果与热量储量不能与地热(包括地温)相比。

国际上热泵技术的利用发展已经数十年,国内的研究是从20世纪90年代开始的。近年来,北京地区热泵技术利用发展较快,从2000年开始到2004年,仅3年多的时间,全市热泵供暖面积已经超过500万m2。浅层地热的利用在热泵技术的发展中占有很大比例,说明了其具有的独特优势和特点。通过各种试验得出的技术和经济分析表明,它将在未来推动我国低品位能源的应用。

1 国外地热能利用的发展情况

1.1 法国

深层地热:法国本土的地热以≥50℃的低焓地热水为主,法国对地热的利用发展于20世纪80年代。法国以供水井和回灌斜井组成的“对井”而著称;两口地热井在地面上相距10m,但在千余米地下的距离,可达400~1000m;1998年的统计资料,巴黎仍有41个区域供暖的“对井”机房在运行,至2005年时数量略有减少。

浅层地热:对于更低温的地热能,法国使用地热热泵进行供暖和制冷。如巴黎塞那河畔的法国电视台,钻井仅几百米深,地下水温可达到23℃,被用于地热供暖系统。

1.2 德国

深层地热:德国地热利用以暖为主,特点是:建立相对集中的大型供热站。由于热泵用电,引用了“季节特性系数”,即供热量与消耗电量之比,一般为5~7的范围;此外,全年热量输出的85%使用地热,全年热量的15%用由石油或燃气燃烧器形成的热源,主要解决峰值供暖负荷。到2002年,已有9个集中供热站,其地热井深度从1100~2400m不等,总供热量136MW。用于暖、温室等;

浅层地热:德国广泛使用分散的浅层地热能及小型地热热泵,供暖之用;地下换热器包括水平的热收集器、垂直的地下换热器,或地下水换热器等;据介绍,仅德国北部,就有有4.5万根地下换热器。据报告,到1999年底止,德国全国至少安装有1.8万台平均制热量19kW的热泵机组。由于在利用中德国多使用双U型地埋管,如以每台19kW机组配以3根深100m的地下换热器,推算1999年底之前,德国应至少有5.4万根的地下换热器。

德国的供暖系统,习惯于使用热水/冷水供热制冷;德国的供暖水温标准是75/65℃,用的地板暖水温仅仅38℃。由于一般住宅夏天并不使用空调,土壤温度靠自然恢复,冬季热泵的水源侧水温常常降到0℃,负荷侧温度38℃,所以其热泵COP值也达4以上。

2 国内地热利用的发展情况

2.1 地热供暖

传统意义上的低温地热水的概念是:温度范围从25~90℃,主要来自深部地层。

20世纪70年代开始,北京地区地热暖主要利用60℃多度地热水进行直供。由于北京地区的地热水温度多在40~60℃范围,所以当时尝试用60℃的地热水通到暖气片中,为达到供暖效果,依靠加大暖气片的片数作保证。而由于当时条件的限制(建筑结构、保温质量、供暖管道材质等),往往在最冷天时室温不够高,供暖效果经常不能保证,或者需要进行调峰处理。

随着近代建筑节能技术的发展,居住建筑供暖热指标已逐渐下降(约20W/m2左右),因此进一步降低供暖水温度,成为一种趋向和可能。由于供暖技术的进步,如用冷热两用型的风机盘管机组,可以大大降低所要求的热源温度。实际运行的供暖水温经常在45℃左右,甚至更低。30~35℃的地板暖供热温度,也是目前住宅或公共建筑可以接受的可行的温度。

因此,北京地区40~60℃的地热水,也将发挥重要的能源作用。地热热泵技术的发展,将会很大程度的利用35~40℃的地热暖尾水。预计在未来能源的构成中,低温地热能的利用,会占越来越大的比重。

2.2 地热热泵

地热热泵,按水源侧能承受的工作温度和负荷侧供热制冷温度,可以分为两种类型:冷热两用型热泵、升温型热泵;

35℃,是冷热两用型热泵的可承受的水源侧最大温度;其负荷侧供回水温度,冬季50/43℃,夏季7/12℃;北京工业大学地热供暖示范工程课题组在2000年初,引进了当时北京第一台国外厂家生产的,能承受35℃地热尾水温度的冷热两用型水-水型热泵及水风型热泵进行实验;后来又在中试工程中,和大型工厂工程进一步使用,都取得了很好的效果。用热泵提升尾水温度的做法,在实际利用中具有十分广泛和积极的意义。

55℃,是升温型热泵所能承受的水源侧最大温度;升温型热泵,仅供冬季负荷侧供回水温度85/70℃,也可以为75/65℃,70/60℃以满足民用暖的需要。

经在某工程测试的数据计算,热泵运行最低效率为2.7~3.4。

2.3 地热的梯级利用

不论是哪种温度的地热水,梯级利用都是一个最佳的利用方案。所谓梯级利用,就是按照用户终端需要的供热水温,从高到低排序;高能高用,温度适用,分配得当,各得其所,通过梯级利用,可有效提高地热利用率。

北京申办2008年奥运会成功以来,由于地质勘查钻井技术的进步,大大加强了钻井的能力与深度,北京地热水的温度有了新的提高,最高达到89℃。

当然,不论地热水提供的温度多高,供暖所需温度和用户所需要的水温,仍然是一定的。地热热泵技术的利用与设备水平的不断进步,有助于进一步提高地热的利用率。

2.4 地热梯级利用的实例

根据北京工业大学地热供暖示范项目组的测试和阶段总结,该校使用地热供暖的初投资,与常规集中供热区域锅炉房的价格基本相当;而运行费用,经在2002,2004年两次分别复测,总效率约在5.79~6.54范围内;费用低于天然气。

在北京热泵技术的应用研究与发展中,研究工作已有10多年的历史。据不完全统计,水源、地温热泵的利用发展超过一般的想像,仅在北京地区及周边,已安装的土壤源地埋管换热器约几千根以上,除一般用于小型别墅外,一些大型的工程也在尝试这种可再生能源的利用试验(初步试验的效果理想)。

3 国内浅层地热能供热的发展

3.1 技术可靠性与基础工作

在土壤源热泵系统的设计中,从土壤中吸和放的热量一定要平衡,才能保持可靠、稳定的运行,因此,逐时的负荷计算很重要。如果冬夏逐月总制热量和总制冷量不平衡,以及冬夏季峰值负荷不平衡,超过一定限度时,会出现一些问题,比如:在冬天,热泵水源侧温度达到-2~-4℃,低于设计值,这时,热泵制热量减少,结果可能不能保证供暖温度;而在夏天,由于夏季负荷过大,热量散不出去,水源侧水温升得很高,会造成热泵停机。这时,就得要考虑一个冷却塔;如果用户要求只需供热,不需供冷;或要求只需供冷,不需供热;则在使用这种系统时,要有足够的补救措施。

地热供暖及各种热泵供暖系统,梯级利用的方案示意图如下:

浅层地热能:全国地热(浅层地热能)开发利用现场经验交流会论文集

大地导热系数包括:塑料管材,回填料,土壤在内的综合的导热系数,还与现场的土壤含水量等因素有关,也只能在现场测定;研究表明,仅就土壤和岩石两类土壤材料的导热系数来说,其数量级可以由0.4W/(m·℃)至6.0W/(m·℃),随其密度及湿度有所不同;常遇到的土壤材料的导热系数,会相差两倍以上;如果大地导热系数相差两倍,在一定的条件下,设计管长,可以减少大约20%;同时,在提高回填材料的导热系数上,多年来国外都做了不少改进。

大地导热系数的测定,要在没有被热扰动过的土壤中现场进行。依据国际上的大地导热系数模拟装置的原理,大地导热系数模拟装置已测出多种数据;该装置由北工大地热供暖课题组,在研究工作中,自行研制、设计和施工;经过了实验检验;并且经改进后,还扩大了其功能。

3.2 合理的热泵选择

一是根据当地的地质与水文地质条件、经济能力、政策导向等因素,进行合理的选择,已用效率高、费用可以接受的热泵方式及设备。

二是按照低的进水温度选热泵,以免制热量不够;由国外某知名的热泵厂家给出的数据表明,该热泵水源侧供水温度3.9℃时的制热量,比14℃时的制热量,大约小一倍;并且样本上说明,不鼓励在该低温工况下运行。

三是要选能承受冬季的低温,夏季的高温的土壤源专用热泵;能承受水源侧进水温度-5℃,和43℃的热泵;不仅在自控上体现了保护温度的不同,在制冷系统上,还应该有必要的措施。

3.3 严格的施工技术

(1)要有定点专用厂家生产关键的设备与管件材料:例如,热泵主机的性能稳定,U型管的底部接头、双U型管的上部接头等,是导致水流阻力加大的主要部位。

(2)井孔的回填材料和方法:回填材料影响导热系数;要使用砂浆泵加压灌浆法,可以保证较高的导热系数。

(3)施工单位要有相应的资质,施工人员(包括电熔焊工和下管,回填工)要进行培训,并有合格证书。

(4)杜绝低劣,粗放的设计,施工工艺,才能保证效果。

3.4 长期的效果监测

根据大地导热系数的测定结果,在设计、工完成后,可以进行使用20~50年的效果模拟预测,主要是确定热泵水源侧,冬夏的最高,最低温度的逐年变化;这样就可以知道其制热量和制冷量的逐年变化;一般说,当冬夏热冷负荷基本一样时,水源侧的冬夏的最高,最低温度也还会逐年上升,这对于北方的供暖有利。

3.5 规范化管理和许可证制度

国家应制定统一标准,包括:地埋管的钻孔,设计,施工规范等。我国是一个大国,任何事情,无序发展,势必造成混乱;由于钻孔的高利润,只要买个小钻机,个体的钻孔很容易实现;据调查,有的工地,钻孔的斜度,可以与相距4~6m的临近钻孔相交汇。地下工程是隐蔽工程,如果无序进行,对于其他地下设施,势必会造成影响;

有关部门,应制定地热地源发展规划。北京是世界最大的城市之一,热泵技术的发展(包括土壤源和地下水源等)应在浅层地温条件调研的基础上,由有关部门提出科学的发展规划。为加强管理,应制定法规,以规范这一技术的有序发展。

对于土壤源热泵系统,可能带来的土壤环境保护问题,应有所准备;要有序钻孔,以保护一个清洁的地球。

4 北京地区深层地热、浅层地热的发展与政策

4.1 深层地热

为科学引导地热的发展,北京已经编制2006—2020年地热可持续利用发展规划。近年内的发展重点,一是进一步探讨为加强地热的科学管理,实行保护性限量开的有关政策。市有关部门已经发出通知,支持地热供暖项目的发展,但要求取回灌措施,保证将暖弃水进行回灌;强调温泉休闲度旅游项目的发展,按不同用途进行循环过滤、中水处理、综合利用,实现零排放的目标。二是支持延庆生态农业县的无烟城建设,提高当地的旅游品牌。例如延庆县城人口不足10万,按规划目标,总建筑面积约500万m2,当地地热埋深2000m,可打出70℃左右、日3000m3地热水,具有发展地热供暖的地热条件。实现地热供暖,可为当地减少50%左右以上的燃煤锅炉。

4.2 浅层地热

浅层地热的开发利用,需要具备一定的地质和水文条件,才能取得较高的效率,达到理想的供暖/制冷效果。为加强地热的开发管理,规范开发中的市场行为,应该立项进行全市浅层地热情况和水文地质条件的调查,并在调查的基础上,划定适合于不同热泵技术发展的条件和范围,编制相关的发展规划,以便引导浅层地热能科学合理的利用。

4.3 地质环境的监测

加强对浅层地热利用的管理和规范,特别是保证水源热泵系统中地下水的回灌、水质检测与地质环境监测,十分重要,应引起有关部门的足够重视。

4.4 发展前景

鉴于改善能源结构和节约的需要,北京市为加强浅层地热等可再生能源的利用,提出未来几年内发展1亿m2供暖面积的目标。这一目标的提出,完全体现了北京地区发展清洁能源和节约的紧迫性。为实现这一目标,在市发改委的牵头下,市9个委办局共同研究、制定了相关的扶持政策,加强对地热与浅层地温利用的支持,引导地热于浅层地源热泵项目,给予一定数量的项目改造或建设资金的补助政策。预测在这一政策的促进下,北京市地热与浅层地热等可再生能源的利用会有一个快速的发展。

参考文献

[1]丁良士等.从深层到浅层地热供热/制冷看北京2008奥运场馆能源建设.2003

[2]北京市地质矿产局地热处.北京市地热2001—2010年可持续利用发展规划.1999

[3]陈建平.北京地热管理研究.2002.北京地热国际研讨会论文集,北京:北质出版社,273~283

汽车前排能改空调出风口位置吗

1.通风量增大、中央空调效果好、凝结水流畅;

2.防止因为细菌、藻类繁殖而堵管;

3.风机盘管风机叶轮、蜗壳和马达、轴等拆洗除尘后噪声减少、电费减少;

4.清除送、回风系统中细菌、灰尘,改善室内空气质量;

5.降低变风量空调机组的风阻,提高热交换效率,增加送风量,节省能源;

6.定期对风机盘管系统维护,延长机组使用寿命;

7.降低运行成本,提升资产价值。

河南宜发科技有限公司是一家致力于集中空调系统服务的专业公司。经营范围:集中空调和地源热泵设计及销售安装、集中空调专业清洗消毒、集中空调系统冷却水处理、集中空调维修保养、集中空调节能改造、集中空调托管服务;集中空调节能产品的研发、销售、安装。公司拥有雄厚的技术实力、丰富的施工经验。

风机盘管和空调机组在使用中有什么区别?

汽车前排可以改空调出风口位置。要拆除原来的风机盘管安装到指定位置,通过镀锌管或PR管路与原来的主管路连接起来,在连接过程中如发现原来管路的阀门管道控制阀损坏就要考虑更换新的以保证风机盘管改造完后能正常使用。

汽车前排空调出风口清洗

首先将车子发动然后打开空调将出风风速调到最大,然后让清洗剂通过软管喷洒到出风口内部,然后用棉签清洗清洗。没个空调出风口都不能落下包括空调滤芯也要进行清洗,空调出风口清洗剂喷洒出来刚开始是带有泡沫的,然后用干净的抹布过标签对出风口进行深度清洁工作。

北京海剑大厦地下水源热泵系统工程介绍

风机盘管和空调机组在使用中有以下几个关键区别:

### 1. 功能与应用范围

- **风机盘管**:

- **功能**:主要用于局部区域的温度控制,提供冷热空气。

- **应用范围**:多用于酒店客房、办公室、小型商铺等局部空间的温度调节。

- **空调机组**:

- **功能**:综合提供制冷、制热、通风和空气净化等功能,可以控制较大区域的空气品质。

- **应用范围**:适用于大型建筑、如商场、医院、办公楼等,需要大范围温度和空气质量控制的场所。

### 2. 系统结构

- **风机盘管**:

- **结构**:通常包括风机、盘管、过滤网等部件,依靠冷水或热水通过盘管进行换热。

- **连接方式**:每个风机盘管单元独立工作,通过管道系统连接到中央冷水机组或热水机组。

- **空调机组**:

- **结构**:包括压缩机、蒸发器、冷凝器、风机等组成的完整系统,通常带有复杂的控制系统。

- **连接方式**:空调机组可以是单独的分体式,也可以是多联机系统,通过制冷剂管路连接多个室内机。

### 3. 控制与调节

- **风机盘管**:

- **控制**:每个风机盘管单元可以独立控制,通过调节风速和水流量来控制温度。

- **灵活性**:适合个别房间或区域的独立控制和调整。

- **空调机组**:

- **控制**:通常由中央控制系统统一管理,可以实现更精细的温度和空气质量控制。

- **集成性**:适合大范围的统一管理和控制,能有效控制整个建筑的温度和湿度。

### 4. 安装与维护

- **风机盘管**:

- **安装**:相对简单,安装位置灵活,占用空间小。

- **维护**:单元独立,维护相对方便,但数量多时维护工作量较大。

- **空调机组**:

- **安装**:相对复杂,需要专业设计和施工,占用空间较大。

- **维护**:集中维护,便于管理,但需要专业技术人员操作。

### 5. 能耗与效率

- **风机盘管**:

- **能耗**:适用于局部控制,能耗较低,节能效果明显。

- **效率**:适合小面积、局部空间的温控,效率较高。

- **空调机组**:

- **能耗**:适用于大面积、整体空间的控制,能耗相对较高,但通过集中控制可以优化能耗。

- **效率**:适合大面积空间,整体效率较高,能提供更稳定的温度和空气质量。

### 6. 初期投资与运行成本

- **风机盘管**:

- **初期投资**:较低,适合小型建筑和局部区域改造。

- **运行成本**:根据使用情况变化,局部使用节能。

- **空调机组**:

- **初期投资**:较高,适合大型建筑和新建项目。

- **运行成本**:集中控制可以优化运行成本,但整体较高。

综上所述,风机盘管适合局部区域的独立控制和小型建筑,而空调机组适合大范围的集中管理和大型建筑的整体空气品质控制。选择哪种系统主要取决于具体的应用场景和需求。

风机盘管分类选型应用及故障排除?

楼洪波 李永泉

(北京市华清集团)

摘要:水源热泵系统是利用地球表面浅层水源如地下水、河流和湖泊中吸收的太阳能和地热能而形成的低温位热能,利用热泵原理,通过输入少量的电能,实现低温位热能向高温位热能转移的一种技术。本文通过工程实例——北京海剑大厦水源热泵系统工程,来介绍水源热泵系统的设计、运行情况及其优势。

1 水源热泵系统简介

水源热泵系统的工作原理与地源热泵相同,不同的是,水源热泵是以浅层地下水为低温热源。通过抽取浅层地下水,经过热泵机组进行换热后,将水再回灌到地下(见图1)。

图1 水源热泵示意图

地下水源热泵是以“地下水”为热能载体,通过热泵实现浅层地能的间接利用;可分为“同井抽灌”和“多井抽灌”的两种方式。

水源热泵空调系统的组成与地源热泵的区别也仅在于室外换热系统上,它是通过钻凿浅层地下水井进行抽水、回灌来达到换热的目的。以浅层地下水为热源的水源热泵系统受水文地质条件的影响较大,主要适合于厚度较大的粗砂和砂砾卵石含水层分布地区应用。此种地层渗透条件好,地下水的补给、径流条件好,抽取和回灌地下水都较容易。

浅层地下水的丰富程度是水源热泵系统推广利用的决定因素,就北京地区而言,水文地质条件好适宜水源热泵的地区主要分布在永定河、潮白河等主要河流形成的冲洪积扇中、上部地区,如海淀区、石景山区、丰台区、大兴北部、城区、顺义县城东北部等地。根据具体地点的水文地质条件的差异,可设计不同类型的抽灌井方式。

2 海剑大厦工程实例介绍

2.1 工程概况

北京海剑大厦位于海淀区厂洼西路8号,总建筑面积26000m2,原中央空调系统的冷热源用溴化锂机组两台(单台制冷量1100kW)和燃煤锅炉,末端为新风机组加风机盘管。将现有的冷热源改造为高效、节能、环保的水源热泵系统,冬季供暖,夏季制冷,同时满足130个喷头的洗浴用水需求。

本项目夏季空调负荷为:2200kW;冬季暖负荷为:1500kW。

2.2 热泵系统方案简介

2.2.1 站房系统概述

本系统是以地下水为热(冷)源,冬季从地下水中“取”出低品位热量,通过机组“搬运”变成高品位热能。夏季将房间内热量带出,通过机组转到地下水中。水源热泵机组冬季可提供45~55℃的热水,夏季可提供7~12℃空调用冷冻水,同时本系统可提供50℃的生活热水。

2.2.2 系统主要特点

(1)地下水抽灌井系统:满足冬季水量160m3/h,夏季水量200m3/h。共设计4眼抽灌井,冬季1抽2灌,夏季1抽3灌。在控制利用方式上,取水井泵恒压变频控制,与每个机组出水口定温控制关联,做到单个机组按需用水,在机组关机时,温度控制阀相应关闭。以上控制方式,可最大限度的实现按需取水,实践证明节水量可达到50%以上,节水等于节电,降低运行费,同时可以减轻回灌井的回灌压力,增加回灌井的寿命。

(2)控制系统选用:选用变频控制,自动化程度高,节能效果显著。

(3)夏季生活卫生热水通过系统设计及控制措施,回收空调热泵冷凝热,相当于免费使用热水。

2.2.3 主机选型

主机设备选用沈阳一冷生产的GSHP?800型机组3台,压缩机型式为MITSUBISHI半封闭单螺杆压缩机,型号为MS?18L,此类压缩机噪音低、结构简单、转动部件少、使用寿命长。机组的冷凝器出水温度可达到55℃。

机组具有体积小,能效比高、自动化程度高等特点。

2.3 系统运行概况

2.3.1 冬季工况

满足制热需求,需开启2台设备机组,总制热量为1650kW,电功率输入约480kW。制热时单台机组冷冻水量为80m3/h,冷却水量为64.6m3/h。故地下水需求量总计160m3/h。

2.3.2 夏季工况

满足制冷需求,需开启3台设备,总制冷量为2196kW,电功率输入约550kW,制冷时单台机组冷冻水量为126m3/h,冷却水量为66m3/h。地下水需求量总计198m3/h。

2.3.3 生活热水系统

本项目每天热水用量为52m3,最大小时用水量为7.5m3,洗浴用水用板式换热器换热,配30m3的储热水箱,供水温度50℃。冬季利用2台机组的产热量与建筑实际热负荷需求的差值解决,夏季制冷时可免费回收冷凝热供应生活用水。

2.4 抽灌井的设计

2.4.1 地区地质及水文地质条件

海剑大厦地区属永定河古河道,100m以浅为第四系永定河冲洪积物,岩性以砂粘、砂卵砾石、漂石等为主(表1);100m以下为第四系泥砾层。

表1 地层剖面岩性表

根据区域水文地质条件结合周边现有浅层水井情况分析,该区第四系孔隙水为潜水,含水层岩性为砂卵砾石,颗粒粗,厚度较大,渗透性好,其补给来源主要为大气降水及上游地下水侧向径流,水位埋深约15~20m。单井出水量可达200m3/h,水温约15℃左右。2.4.2 抽灌井设计

本项目水源热泵机组所需地下水量:夏季200m3/h,冬季160m3/h。夏季回灌水温度设计为27.5℃,冬季回灌水温度设计为8℃。根据用水情况,本项目凿井4眼,其中抽水井1眼、回灌井2眼、备用井1眼。

由于机组仅利用了地下水中的“热”而不消耗水量。地下水在使用过程中仅温度发生了小幅度的变化,而水质不变。通过抽灌井的设计,将换热后的地下水灌入地下含水层中,可以促进地下水的循环。起到节水、节能、节资的多重效果。

2.5 系统运行情况分析

2.5.1 运行效果

本项目于2003年5月份竣工并投入使用,经过3个暖季和制冷季的运行,效果良好,冬季室内温度能够保持在18℃以上,夏季室内温度约为24~25℃,生活热水供水温度为50℃。

2.5.2 运行费用分析

根据本项目3年来的实际运行分析,运行费用测算如下:

电费按照实际峰谷均价0.62元/kW·h来计算。

2003年11月4日~2004年11月6 日:全年机组耗电542628kW ·h,所需费用为33.64万元,其它设备耗电456872kW·h(包括循环水泵和生活热水等相关费用),所需费用为28.33万元,合计61.万元,折合每年每平方米为23.8元。

2005年夏季系统耗电量为213832kW ·h,所需费用为13.26万元,折合每平方米5.1元;2005~2006年冬季系统耗电量为655080kW·h,所需费用为40.6万元;全年总运行费用合计为53.86万元,折合每年每平方米20.7元。

改造前全年运行费用约为110万元(且不含循环水泵和生活热水费用),与现在系统相比,每年节约运行电费约50多万元。

3 结束语

通过以上简单介绍可知,海剑大厦水源热泵系统在其环保高效、节能节资等方面具有突出的优势,特别是在运行管理到位的情况下,水源热泵系统的运行费用可能低于燃煤暖系统。

由此发展水源热泵系统是能源结构调整的有效途径,我们相信水源热泵系统一定会在优化我国的能源结构,促进多能互补,提高能源的利用效率方面发挥其重要的作用。

空调系统末端设计步骤

风机盘管主要由风机,换热盘管和机壳组成,按风机盘管机外静压可分为标准型和高静压型、按换热盘管排数可分为两排和三排,换热盘管一般是用铜管串铝翅片,铜管外径为10~16mm,翅片厚度约0.15~0.2mm,间距2.0~3.0mm,风机一般用双进风前弯形叶片离心风机,电机用电容式4极单相电机、三档转速、机壳和凝水盘隔热。

借助风机盘管机组不断地循环室内空气,使之通过盘管而被冷却或加热,以保持房间要求的温度和一定的相对湿度。盘管使用的冷水或热水,由集中冷源和热源供应,与此同时,由新风空调机房集中处理后的新风,通过专门的新风管道分别送人各空调房间,以满足空调房间的卫生要求。

风机盘管空调系统与集中式系统相比,没有大风道,只有水管和较小的新风管,具有布置和安装方便、占用建筑空间小、单独调节好等优点,广泛用于温、湿度精度要求不高、房间数多、房间较小、需要单独控制的舒适性空调中。

风机盘管工作原理没有中央空调复杂,其实我们可以把风机盘管形象的看做是一台电扇,只是这台电扇吹出来的风是我们需要的温度。

风机盘管的结构

风机:由单向多速低噪声感应系统电动机带动,通过调节输入电压改变风机转速,使风机风量分为高、中、低三档,由电器开关控制,相应调节风机盘管的供冷(热)量。风机是输送空气的动力源,又是强化空气侧对流换热(盘管外表面)的扰动源,与电动机一起又是机组的主要噪声源。

盘管:是一种用肋片管制成的空气-水热交换器。冷媒水(热水)在管内流动,因冷媒水温度低于空气的露点温度,所以管外表面上有凝结水,呈现湿工况下的换热,兼有热交换和质交换,提高了换热效果。盘管承担房间空调负荷的大部或全部,管排一般为3-4排。

凝水盘:与泄水接管置于盘管底下,作用是接纳盘管上不断凝结出来的水滴,由泄水接管排出室外。

空气过滤器:与泄水接管置于盘管底下,作用是接纳盘管上不断凝结出来的水滴,由泄水接管排出室外。

风机盘管工作原理与制冷运行过程

风机盘管机组可分为水路和气路。水路由集中空调冷(热)源设备(如制冷机)供给冷(热)媒水,在水泵作用下,输送到盘管管内循环流动。气路是空气由风机经回风口吸入室内,然后横掠过盘管,与盘管内的冷(热)媒水换热后,降温除湿,再由送风口送入室内。如此反复循环,使室内温、湿度得以调节。

中央空调系统运行的过程实质上是热量转移的过程。中央空调制冷时,典型的制冷时热量转移过程如下:

风机盘管加新风系统优缺点

风机盘管加新风系统分为两部分,中央空调风机盘管和新风系统,风机盘管是中央空调末端设备,新风系统负担新风负荷以满足室内空气质量,风机盘管加新风系统是水系统空调中一种重要形式,也是民营建筑中用较为普遍的空调形式。

风机盘管加新风系统优点(与全空气系统相比)

风机盘管加新风系统优点一:控制灵活,具有个别控制的优越性,可灵活地调节各房间的温度,根据房间的使用状况确定风机盘管的启停;

风机盘管加新风系统优点二:风机盘管机组体型小,占地小,布置和安装方便,甚至适合于旧有建筑的改造;

风机盘管加新风系统优点三:容易实现系统分区控制,冷热负荷能够按房间朝向,使用目的,使用时间等把系统分割为若干区域系统,实施分区控制。

风机盘管加新风系统缺点(与全空气系统相比)

风机盘管加新风系统缺点一:因机组分散设置,台数较多,维修管理工作量大;

风机盘管加新风系统缺点二:室内空气品质比较差,很难进行二级过滤且易发生凝结水渗顶事故。

风机盘管加新风系统缺点三:风机盘管机组方式本身解决新风量困难,由于机组风机的静压小,气流分布受限制,实用于进深小于6米的房间。

风机盘管加新风系统优点与缺点并存,合理的设计、合适的设备选择、正确的施工安装可以减少风机盘管加新风系统带来的缺陷,以上只是认识一下风机盘管加新风系统优点和缺点,对于设计师而言,可以做到取长补短;对于消费者而言,可以趋利避害,选择适合自己的空调系统。

风机盘管设计选型要点

风机盘管机体小,布置灵活、安装方便、占用建筑空间较少,便于配合内装施工。但怎样根据业主的不同需求,结合设计图纸选择较好的风机盘管应用到实际工程中去,应充分考虑了以下几点:

1、冷量的校核

目前市场的产品,一般都是名义制冷量而实际运行中的冷量应是冷量×单位时间内的平均运行时间,即改变运行时间或风量,都会影响机组的输入冷量。所以并非名义冷量越高越好。如果仅按高冷量选用机组,会出现供冷能力过大,导致开动率过低,换气次数减少,室温梯度加大,还会加大系统容量和设备投资,空调能耗加大,空调效果降低。所以冷量仅作为选设备的必要条件之一,还应兼顾其它因素。

2、风量校核

主要按房间品质要求校核换气次数。送风温差越小,换气次数越多,则空气品质越好,就越舒适,为什么有的空调房间感受有异味、闷气,就是风量校核没有处理好。由于风机盘管的名义风量是在不通水,空气进出口压差为零的工况下测定的,故存在一些不切实际的因素,所以实际确定风量是应将这部分理想状态下的风量值扣除,通过经验测算,这部分增补风量应占名义风量的20—30%。

3、送、回风方式

送、回风方式即形成所谓的气流组织,其合理与否直接影响到空调房间的温度场、速度场的均匀性和稳定性,也即空调效果的好坏。合理的气流组织要求一定的送风速度,避免气流短路,以保证一定的射流长度。风速取决于机外静压,送风量、送风口等因素。机外静压过低,会导致风量下降,射程降低,房间冷热不均,设计气流组织与实际运行状态在曲线图上存在较大差异,故应根据实际的建筑格局、房间的结构形式,进深、高度等情况,选择中档风量、风速指标来相应选择风机盘管型号。

4、其它因素

a.噪音指标控制在40dB以下,对噪音偏大的风机盘管,加装消声处理装置,阻力值不大于10Pa。

b.安装、施工中质量注意保温质量,冷凝水的排放,坡向,管件接头,系统清洁。

c.水系统的设置方式水平系统还是垂直系统,部分工地选用垂直系统,能较好的保证冷凝水的排放,保证了房间的层高要求。

风机盘管控制原理与接线

风机盘管简单控制:使用三速开关直接手动控制风机的三速转换与启停。

风机盘管温度控制:使用温控器根据设定温度与实际检测温度的比较、运算,自动控制电动两/三通阀的开闭,风机的三速转换,或直接控制风机的三速转换与启停,从而通过控制系统水流或风量达到恒温。

风机盘管分类与参数性能

按形式:卧式暗装、卧式明装、立式暗装、立式明装、卡式五种;

按厚度:超薄型、普通型;

按有无冷凝水泵:普通型、豪华型;

按机组静压:0Pa、12Pa、30Pa、50Pa、80Pa (机外静压);

按照排管数量 :两排管、三排管;

按制式:两管制、四管制;

风机盘管所说的几排指的是风机盘管表冷器铜管的排数,一般的二排就是铜管两排,每排8根,一共16根铜管;三排就是铜管三排,每排8根,一共24根铜管。铜管的根数越多,制冷效果越好。

两管制:普通风机盘管夏季走冷水制冷,冬季走热水制热;

四管制:多用于一些比较豪华场所,可以同时走热水和冷水,即可以根据需要有的房间制冷,有的房间取暖。

参数变化对性能造成的影响

据统计,供水温度升高1℃时,制冷量减少10%左右,供水温度越高,减幅越大,除湿能力下降。

供水条件一定,风机盘管风量改变时,制冷量和空气处理焓差随着变化,一般是制冷量减少,焓差增大,单位制冷量风机耗电变化不大。

风机盘管进、出水温差增大时,水量减少,换热盘管的传热系数随着减小。另外,传热温差也发生了变化,因此,风机盘管的制冷量随供回水温差的增大而减少,据统计当供水温度为7℃,供、回水温差从5℃提高到7℃时,制冷量可减少17%左右。

风机盘管常见故障现象

风机噪音故障表现及处理方法:

1、轴承损坏产生的噪音;处理方法是更换轴承。

2、运转时与吊顶产生的噪音;处理方法是调整盘管吊杆螺母高度,或处理风口与吊顶龙骨的摩擦。

3、管道中有空气产生的噪音;处理方法是在盘管排气阀、楼层排气阀、末端排气阀将管道中空气排尽。

风机不能启动或运行速度慢故障表现及处理方法:

1、温度开关损坏;用电笔测量温控开关输入端和风机输出桩头是否有电,如判断温度开关损坏,可更换或维修温度开关。

2、运行速度慢:

a、感觉一下风机表面温度是否正常;暖通南社

b、停机后手动转动风叶,感觉转动是否灵活,如有阻力更换风机轴承;

c、如手动盘运转正常,更换启动电容;

d、测量电机线圈电阻,如不正常更换电机。

空调效果差或没效果:

1、打开盘管排气阀,检查系统循环水温是否正常;

2、检查进出口温度:

a、温差很小,打开盘管排气阀,检查水温是否正常,如水温正常,再检查二通阀是否打开,如二通阀未打开,继续检查二通阀供电是否正常,检查Y型过滤网是否堵塞;

b、进出口温差正常,查看房间保温是否正常,比如门窗是否关闭,如门窗未关空气对流后,空调就没有效果,应与客户做好解释工作;

c、进出口温差偏大出风口风量小,检查进风口滤网是否有灰尘,检查风机转速是否正常。

空调有异味:

1、检查、清洗进风口风滤网;

2、检查盘管翘片是否有灰尘,如果有灰尘应实施清洗方案;

3、检查风管内是否有异物、灰尘、积水等,清洁干净去除异味。

4、检查积水盘有没有异物。

空调漏水:

1、排水不畅:a、检查节水盘是否堵塞,b、检查排水管是否堵塞,c、检查排水管道坡度是否合理。

2、保温层脱落,恢复保温层。

3、排气阀漏水,关紧排气阀。(暖通南社)

4、软管、阀门、管件漏水,关闭总阀再进行更换。

空调水管爆管紧急处理:

1、打开泄水阀排水减压;

2、关闭空调主机、膨胀水箱补水阀增压泵、循环泵;

3、关闭爆管区域总阀;

4、关闭爆管区域电源;

5、危及到电梯时,关闭电梯电源,尽量停到高于爆管楼层;

6、及时挪开重要物资,清理积水。

更多关于工程/服务/购类的标书代写制作,提升中标率,您可以点击底部客服免费咨询:s://bid.lcyff/#/?source=bdzd

集体中央空调改装家用空调

设计顺序:先末端,后主机  设计原则:合理、经济,最大限度节约运行成本  设计方案及适用范围:  一、末端部分:  1、风机盘管系统;  适用范围:一般办公、餐饮等场所  2、风机盘管加新风系统;  适用范围:要求较高的办公、酒店、餐饮等场所  3、全空气系统;  适用范围:商场超市、车间等大开间场所  二、主机部分:  1、螺杆式冷水机组制冷,市政或锅炉供热;  适用范围:有专用机房、电力充足、需专人值守  2、风冷机组制冷(制热),市政或锅炉供热;  适用范围:空调面积较小、没有机房、无专人值守  3、离心式冷水机组制冷,市政或锅炉供热;  适用范围:空调面积较大、有专用机房、电力充足、需专人值守  4、溴化锂机组制冷(制热),市政或锅炉供热;  适用范围:电力不足、有市政热源并经综合比较经济、有专用机房、需专人值守  三、其它:  1、一拖多系统;  适用范围:空调面积较小、无专用机房、无专人值守、空调面积较大但非同时使用且需独立计费等场所  2、风管机系统;  适用范围:大开间、无专用机房、无专人值守、控制灵活、初投资较低  设计程序:  一、末端部分:  (一)设备选型:  1、计算实际空调面积;  2、根据使用场所确定冷负荷指标,计算出设计总负荷,根据设备布置特点确定所需设备数量,确定设备型号;  冷负荷概算指标:  用组合式空调器,循环次数商场6~7次,推荐8~9次  (二)水系统设计:  1、设备定位布置,确定立管位置,根据系统复杂程度确定用同程式或异程式(当立管与最末端设备距离超过30米时尽量用同程式);  2、确定主管道走向,并与设备合理连接,当主管道有分支时应设阀门以便于调节;  3、根据设备流量确定每一管段的水流量,再根据设计水流速计算出管径;  4、空调水设计流速为0.9-2.5m/s,管径越大、流速越大,管道比摩阻应小于500;  5、水管与设备连接时,进水管上设软接、过滤器、阀门,出水管上设软接、阀门;  6、冷凝水管径设计:  当机组冷负荷Q≤7KW,DN=20;Q=7.1-17.6,DN=25;Q=17.7-100,DN=32;Q=101-176,DN=40;Q=177-598,DN=50;Q=599-1055,DN=80;Q=1056-1512,DN=100;Q=1513-12462,DN=125;Q>12462,DN=150  7、空调水管保温:  当用超细玻璃棉管壳保温时,供回水管保温厚度用50mm,冷凝水管保温厚度用30mm;  当用橡塑材料保温时,供回水管保温厚度用30mm,冷凝水管保温厚度用15mm;  当冷凝水管用PVC等塑料管材时,可不作保温处理。一拖多氟系统应当保温。  (三)风系统设计:  1、风量选择:  (1)新风工况:按每人最小新风量确定  影剧院、博物馆、体育馆、商店,每人最小新风量8M3/H;  办公室、图书馆、会议室、餐厅、舞厅、普通病房,每人最小新风量17M3/H;  客房,每人最小新风量30M3/H,正常用50M3/H;  (2)回风工况:按循环次数确定,一般取8-10次/H,即空调空间体积×(8-10)/H  2、风机风压的选择:  估算法:风压=(最不利环路长度×10)Pa  3、设备定位,尽量靠近水系统立管;  4、布置风口,在保证无空调死区的前提下,尽量减少风口数量、保持风口规格统一;送风口风速在2-2.5 m/s之间,回风口风速在3-5 m/s之间,根据风口风量和风速确定风口尺寸;  5、确定主风道走向,并与各风口合理连接,当主管道有分支时应设阀门以便于调节,并且每个风口均设风量调节阀;  6、根据风口数量确定各段风道风量,再根据设计风速计算出风道截面积,根据安装空间确定风道规格,在保证装修标高的前提下,尽量减小风道的宽高比,尽量减少变径;  通风空调风管内设计流速(m/s):  注:1、表中分子为推荐流速,分母为最大流速。  2、对消声有严格要求的系统,管内的流速不宜超过5 m/s,支管内的流速不宜大于3 m/s。  7、当风道穿越机房或防火分区时,风道上应设防火调节阀;  8、当风机风量大于10000 M3/H时,风机的进出口应设消音静压箱,通过静压箱截面流速为2-3 m/s;小于10000 M3/H时,在风机出口处设消音器即可,消音器的内径与主风道相同;  9、钢板空调风道保温:  当用超细玻璃棉板保温时,保温厚度为40mm;当用橡塑板保温时,保温厚度为15mm。 

你说的是水机(风机盘管)控制器只和室内机连接~要看能不能改造得看你那室外能不能放下外机了?在你们家连接物业主管道上加上阀门和三通连接你自己购买的外机就OK了,还要有补水很复杂的~至于多少钱取决于你们家室内机的制冷量(几台室内机,大小,房屋面积,管路多少)