1.合肥通用机电产品检测院的(二)检测和检查专业能力

2.空调VAV系统和VRV系统的本质区别是什么?

3.中央空调降噪求助

4.中央空调末端设备选择时应注意的几个问题?

5.风机盘管的风量与制冷面积的换算如:100平米

6.风机盘管安装时应该注意哪些事项?

风机盘管噪声标准_风机盘管噪声试验室

导语:近几年空调冰箱的使用越来越多,那么其中一个最为关键的零部件就是风机盘管。经过多年努力,风机盘管技术不断发展,所以它运用的领域也在不断的增加,目前主要运用在办公室、医院、科研机构等一些场所。风机盘管的广泛应用随之而来的就是风机盘管的安装问题,那么我们应该怎样进行风机盘管的安装,安装时有什么规范呢?接下来就和小编一起了解一下吧。

风机盘管安装规范-施工准备工作

1.风机盘管和主、辅材料已运抵现场,安装所需工具已准备齐全,且有安装前检测用的场地、水源、电源。

2.建筑结构工程施工完毕,屋顶做完防水层,基准线已测放。

3.空调系统干管安装完毕,接往风机盘管的支管预留管口位置、标高符合要求。

4.已编制施工方案,完成安全技术交底。

5.参照有关专业图和建筑装修图,核对风机盘管的位置、标高是否正确。有问题及时与设计和有关人员研究解决,办理变更洽商记录。

6.电机试运转:风机盘管应按总台数的10%通电进行三速试运转检查。机械部分不得有摩擦,电气部分不得漏电,运转平稳、噪声正常。

7.表冷器水压试验:风机盘管的表冷器应按总台数的10%进行水压试验,不得渗漏。

  风机盘管安装规范-施工规范

支吊架安装:1.风机盘管应设置独立的支、吊架固定;

2.根据施工图确定吊杆生根位置,生根一般用膨胀螺栓;

3.按风机盘管不同的型号、重量,选取相应规格的吊杆;

4.减振吊架的安装应符合设计要求。

风机盘管安装:1.卧式风机盘管安装的高度、位置应正确,吊杆与盘管连接应用双螺母紧固找平,并在螺母上加3㎜厚的橡胶垫;

2.吊装盘管应坡向水盘排水口;

3.暗装的卧式风机盘管在吊顶处应留有检查门,便于机组维修;

4.立式风机盘管安装应牢固,位置及高度应正确。

连接配管:1.风管、回风箱及风口与风机盘管机组连接应严密、牢固;

2.风机盘管与冷热媒管的连接,应在管道系统冲洗、排污后且再循环试运行2h以上,水质合格后进行,以防杂物堵塞表冷器;

3.风机盘管的进出水管接头及排水管接头不得漏水;进出水管必须保温,防止产生凝结水;

4.风机盘管与管道相连接时宜用软接管或紫铜管,其耐压值应大于等于1.5倍的工作压力。软管的连接应牢固,不应有扭曲和瘪管现象;

5.与凝结水管连接应用软管,其长度一般不大于300mm,软管宜用透明胶管,并用喉箍紧固,防止渗漏。凝结水应畅通地流到指定位置,水盘应无积水现象。

风机盘管的安装应该按照规范的方法进行安装,只有这样才能保证他的正常工作,同时还能延长您的风机盘管的使用寿命。上文中小编已经详细介绍了风机盘管在安装时应该注意的事项以及操作规范,只要大家在操作时严格按照规范,就可以保证自己的风机盘管安全工作。今天小编关于风机盘管安装的相关介绍已经结束了,希望对朋友们能够有所帮助。

合肥通用机电产品检测院的(二)检测和检查专业能力

问题一:新风焓差是什么意思 一般指新风经过一定的装置后,内能发生的变化量。

问题二:对于空调焓差是越大越好吗? 恩

问题三:知道总冷负荷怎么算空调的送风量? 根据公式:

冷负荷(kw)=风量(kg/s) * 焓差(kj/kg)

首先要知道送风点的空气状态,即空调机组(AHU or FAU)或风机盘管(FCU)送风口点的空气状态,这个状态由暖通工程师根据项目特征确定,再由设备商根据暖通工程师确定的这龚状态点设定设备。

然后根据上面说的这个状态点和空调房间内的空气状态点求出焓差,再可以算出风量。

问题四:焓差(室)的定义是什么?它由哪两大部分组成?什么是热平衡?焓差的风量又如何调控? 30分 焓差法

是一种测定空调机制冷、制热能力的方法。它对空调机的送风参数、回风参数以及循环风量进行测量,用测出的 风量与送风、回风焓差的乘积确定空调机的能力。

问题五:v系统ahu送风温度是多少 DDC自动控制对空调系统节能的方法

基于DDC自动控制对空调系统节能的方法摘要:空调的用量愈大,消耗电力也愈多,直接造成城市供电不足和夏季限电问题的出现。所以实有必要发展一种有效的空调系统节能方法。本文整合了DDC自动控制系统,提出了利用DDC对建筑物空调系统自动控制的思路,既可以让空调系统更有效率的运转,又可以提供舒适的环境和达到节能的目的。

1.引言

节能可以说是楼字自动控制系统的出发点和归宿。众所周知,在智能建筑中,HVAC(暖、通风和空调)系统所耗费的能量要占到大楼消耗的总能量的极大部分比例,大致在50%~60%左右。特别是冷:东机组、冷却塔、循环水泵和空调机组、新风机组,都是耗能大户。所以实有必要发展一种有效的空调系统节能方法,尤其用是在改善现有大楼空调系统自动化上方面。DDC(Directdigitalcontr01)直接数字化控制,是一项构造简单操作容易的控制设备,它可借由接口转接设备随负荷变化作系统控制,如空调冷水循环系统、空调箱变频自动风量调整及冷却水塔散热风扇的变频操控等,可以让空调系统更有效率的运转,这样,不仅为物业管理带来很大的经济效益,而且还可使系统在较佳的工况下运行,从而延长设备的使用寿命以及达到提供舒适的空调环境和节能之目的。

2.DDC自动控制系统介绍

DDC直接数字化控制是一种简易的微电脑设备,它须与其它组件,如变频器、温度湿度传感器、焓差控制器、两通阀等组件整合搭配才能发挥功效。这些组件的输入输出以模拟信号DC0~10V或低电流4-20mA作信号传送,送至DDC控制器。经DDC内置软件作判别后反向输出信号来控制阀部件或变频器来调节空调。DDC自动控制系统各周边设备及控制功能。

2.1直接数字控制(DDC)

系指一台数字电脑直接操作一个状态,或者一套程序予以自动控制的作业。所配用的数字电脑,可以用小型微处理机,亦可配用于中央型的微电脑上去连线作业。空调系统常用的控制元件,例如风闸开关、阀开关、阶动继电器等的操作,不论其原为气动式还是电动式的,亦不论其作用原为调整大小的动作或仅为开或关的动作,均可改用DDC方式作自动的操作。

DDC系统利用硬件和软件来调整控制变数或依据操作人员的需要来控制制造程序。其中控制变数包括温度、压力、相对湿度、流量等。控制程序和设定点可利用软件输入电脑内,并能够在操作人员的键盘上进行修正,如此可以取代过去对硬件控制器的校正。DDC系统亦可将检测到的温度、压力等控制变数,与预先储存在电脑内的希望数值相比较,如果测试的数值小于或大于所希望的数值,系统将会送出一系列的数字脉冲,这些脉冲则借助电动对气动的转换器 (electrtC-to-pneUmatiCtransducer)或电动对电动的转换器(electric-to- electrlctransducer)转变成控制装置的调整信号,然后通过电脑的调整,其所输出的信号,再操作其转换器,使原来系气动或电动的组件按指示信号操作。若空调的控制器件,原系气动式,则需要另加一套将气动动作变为电器信号的装置,将电器信号输入电脑操作。原系电动操作元件者亦相同。至于输入 DDC系统后,则不需另加任何硬件设备,即可作任何性能控制的操作。

2.2变频器

变频器驱动电动机是利用二极管等整流器件将电源予以整流后,再经由电容器等平滑,使之由交流转换成直流。利用PowerTransister、 SCR(Thynstor)等将直流换成任一频率,然后以交流电......>>

问题六:机房精密空调和普通家用空调区别的区别是什么 机房精密空调和普通家用空调的区别体现在很多方面:

计算机机房对温度、湿度及洁净度均有较严格的要求,因此,计算机机房精密空调在设计上与传统的舒适性空调有着很大的区别,表现在以下3个方面:

传统的舒适性空调主要是针对于人员设计,送风量小,送风焓差大,降温和除湿同时进行;而机房内显热量占全部热量的90%以上,它包括设备本身发热、照明发热量、通过墙壁、天花、窗户、地板的导热量,以及阳光辐射热,通过缝隙的渗透风和新风热量等。这些发热量产生的湿量很小,因此用舒适性空调势必造成机房内相对湿度过低,而使设备内部电路元器件表面积累静电,产生放电从而损坏设备、干扰数据传输和存储。同时,由于制冷量的(40%~60%)消耗在除湿上,使得实际冷却设备的冷量减少很多,大大增加了能量的消耗。机房精密空调在设计上用严格控制蒸发器内蒸发压力,增大送风量使蒸发器表面温度高于空气露点温度而不除湿,产生的冷量全部用来降温,提高了工作效率,降低了湿量损失(送风量大,送风焓差减小)。

2.舒适性空调风量小,风速低,只能在送风方向局部气流循环,不能在机房形成整体的气流循环,机房冷却不均匀,使得机房内存在区域温差,送风方向区域温度低,其他区域温度高,发热设备因摆放位置不同而产生局部热量积累,导致设备过热损坏。而机房精密空调送风量大,机房换气次数高(通常在30~60次/小时),整个机房内能形成整体的气流循环,使机房内的所有设备均能平均得到冷却。

3.传统的舒适性空调,由于送风量小,换气次数少,机房内空气不能保证有足够高的流速将尘埃带回到过滤器上,而在机房设备内部产生沉积,对设备本身产生不良影响。且一般舒适性空调机组的过滤性能较差,不能满足计算机的净化要求。用机房精密空调送风量大,空气循环好,同时因具有专用的空气过滤器,能及时高效的滤掉空气中的尘挨,保持机房的洁净度。

问题七:机房专用空调的特点 机房专用空调不仅对温度可以调节,也可以对湿度可以调节,并且精度都是很高的。计算机特别是服务器对温度和湿度都有特别高的要求,如果变化太大,计算机的计算就可能出现差错,对服务商是是很不利的特别是银行和通讯行业。的机房专用空调温度精度达±2℃,湿度精度±5%,高精度机房精密空调可以温度精度达到±0.5℃,湿度精度达到±2%。  二、设备散湿量很小  计算机设备虽然散热量大,但无散湿量。机房内的湿量主要来自工作人员及渗入的室外空气。因此,机房内的散湿量很小,IDC机房内的散湿量平均只有8~16g/m2h。  三、空调送风焓差小  因为IDC机房的高热量、小散湿量,所以空调在处理空气过程中以制冷为主,除湿为辅,空气处理过程可以近似为一个等湿降温过程。考虑到设备结露问题,机房空调的送风温度较舒适空调偏高,因此显热比很高,焓差明显小。小焓差的处理过程,便专用空调的能效比也相对较高。  四、空调送风量大   在小焓差的情况下,要消除设备的大热量,增大通风量是必然的。大风量在有限空间内循环,换气次数明显大于其他类型的空调。在IDC机房中,一般的换气次数在30~60次/小时,如此高的换气次数使得机房内的温度分布更趋于均匀。   五、空调送风方式  送风方式直接关系空调的最终效果。机房空调的送风方式一般有上送下回、下送上回、上送侧回3种,用较多的是下送上回、上送侧回两种。上送侧回方式比较适用于发热量大约250W/m2的情况,而IDC机房的发热量至少为500W/m2,冷空气下沉效果很差,明显不适用。此外,由于冷风不直接经过机架内部,因此一些早期建设的上送侧回的系统,几乎都出现过机房温度偏高的问题。当IDC机房内平均耗电功率达到lkVA/m2以上时,必须用下送风方式的空调系统。  六、高可靠性  IDC机房投产以后,有一个很长的运行周期,在此期间,空调必须具有高稳定性和高可靠性。  空调设备的故障将直接影响机房的环境,进而影响服务器的正常工作。机房建设时,选择空调会考虑n+l的余量备份,但如果空调的故障率高还是会将余量备份消耗殆尽,因此要保证高可靠性。  专用空调的高可靠性还体现在断电后的自动复位,在断电恢复后能够现场自动复位或通过远程监控复位,这比人工复位迅速,尤其是无人值守机房。  七、优势对比   如果把舒适性空调机用作机房精密空调系统,由于机房要求其运行点为:冬季:20±2℃,夏季:23±2℃,而舒适性空调机的设计点温度一般为27℃,所以机组的实际供冷能力一般比样本标明的额定值低10%~25%。此外,运行点偏离设计点时,在一定程度上机组的部分机件性能由于偏离了最佳运行点,从而影响了机组整体的匹配状态,不利于机组性能的充分发挥和高效率运行。然而机房专用精密空调机,由于把运行点作为设计点,因而机组始终处于最佳运行点,这就从根本上避免了这些问题。   综上所述,根据机房负荷特性及特点,就需要设计出一种将这些要求综合于一体的空调机,实现以处理干冷却工况为主的空气处理过程。  八、使用寿命  一般机房专用空调厂家的设计寿命是最低是10年,连续运行时间是86400小时,平均无故率达到25000小时,实际运用过程中,机房专用精密空调可运行15年 。

问题八:为什么要用机房专用空调 机房空调 ,顾名思义其是一种专供机房使用的高精度空调,因其不但可以控制机房温度,也可以同时控制湿度,因此也叫恒温恒湿空调机房专用空调机,另因其对温度、湿度控制的精度很高,亦称机房精密空调。

机房空调特点

机房空调是针对机房机高热负荷、低湿负荷,温湿度精度要求高等特点而设计的产品,具有精度高、可靠性好、显热比高、噪声低、适应性强、结构紧凑、检修方便等特点。 ① 多种选择,有风冷、水冷两种冷却方式,满足客户不同使用环境的需求。 ② 模块式机房专用空调机用户可根据需要,选用单个模块或多个模块组合。模块之间可并排安装也可分开安装。各机组独立供电、供水,机组之间用信号线相连。 ③ 人性化的微电脑控制系统,操作简单方便。高精度的PLC控制技术,多级能量调节,室内温湿度波动小, 温度精度达±0.5℃,湿度精度±3%。 ④ 机组结构紧凑、外型小巧,所有维护、保养均可正面进行,有效减少安装维修空间,便于安装、运输及维护。 ⑤ 压缩机全部用高性能涡旋式压缩机,送风机选用低噪音高效率离心式风机,制冷系统配件皆来自国际知名品牌,性能稳定。 ⑥ 单系统机组设置除湿电磁阀,除湿运行时可提高除湿效率以及节省再加热功耗。多系统具有多级能量调节功能,使之与负荷相适应,高效节能。

机房空调使用场合

计算机房、电信机房、服务器机房、实验室、电力试验室、精密仪器室、档案馆、银行、医院磁共振室、手术室、烟草、化工、纺织、造纸行业、恒温恒湿车间等对环境要求较高的场合。

问题九:空调焓差室中制冷量检测的原理? 5分 焓差法

空调制冷

空调器通电后,制冷系统内制冷剂的低压蒸汽被压缩机吸入并压缩为高压蒸汽后排至

冷凝器。同时轴流风扇吸入的室外空气流经冷凝器,带走制冷剂放出的热量,使高压制冷剂蒸汽凝结为高压液体。

高压液体经过过滤器、节流机构后喷入蒸发器,并在相应的低压下蒸发,吸取周围的热量。同时贯流风扇使空气不

断进入蒸发器的肋片间进行热交换,并将放激后变冷的空气送向室内。如此室内空气不断循环流动,达到降低温度

的目的。

焓差法是一种测定空调机制冷、制热能力的方法。它对空调机的送风参数、回风参数以及循环风量进行测量,用测出的

风量与送风、回风焓差的乘积确定空调机的能力。

问题十:机房精密空调与普通舒适空调的区别? 机房精密空调和普通舒适空调的区别体现在很多方面;计算机机房对温度、湿度及洁净度均有较严格的要求,因此,计算机机房精密空调在设计上与传统的舒适性空调有着很大的区别,表现在以下5个方面:

1.传统的舒适性空调主要是针对于人员设计,送风量小,送风焓差大,降温和除湿同时进行;而机房内显热量占全部热量的90%以上,它包括设备本身发热、照明发热量、通过墙壁、天花、窗户、地板的导热量,以及阳光辐射热,通过缝隙的渗透风和新风热量等。这些发热量产生的湿量很小,因此用舒适性空调势必造成机房内相对湿度过低,而使设备内部电路元器件表面积累静电,产生放电从而损坏设备、干扰数据传输和存储。同时,由于制冷量的(40%~60%)消耗在除湿上,使得实际冷却设备的冷量减少很多,大大增加了能量的消耗。

机房精密空调在设计上用严格控制蒸发器内蒸发压力,增大送风量使蒸发器表面温度高于空气露点温度而不除湿,产生的冷量全部用来降温,提高了工作效率,降低了湿量损失(送风量大,送风焓差减小)。

2.舒适性空调风量小,风速低,只能在送风方向局部气流循环,不能在机房形成整体的气流循环,机房冷却不均匀,使得机房内存在区域温差,送风方向区域温度低,其他区域温度高,发热设备因摆放位置不同而产生局部热量积累,导致设备过热损坏。

而机房精密空调送风量大,机房换气次数高(通常在30~60次/小时),整个机房内能形成整体的气流循环,使机房内的所有设备均能平均得到冷却。

3.传统的舒适性空调,由于送风量小,换气次数少,机房内空气不能保证有足够高的流速将尘埃带回到过滤器上,而在机房设备内部产生沉积,对设备本身产生不良影响。且一般舒适性空调机组的过滤性能较差,不能满足计算机的净化要求。

用机房精密空调送风量大,空气循环好,同时因具有专用的空气过滤器,能及时高效的滤掉空气中的尘挨,保持机房的洁净度。

4.因大多数机房内的电子设备均是连续运行的,工作时间长,因此要求机房精密空调在设计上可大负荷常年连续运转,并要保持极高的可靠性,施耐德优力专用空调机, 能充分满足用户的各种需求。舒适性空调较难满足要求,尤其是在冬季,计算机机房因其密封性好而发热设备又多,仍需空调机组正常制冷工作,此时,一般舒适性空调由于室外冷凝压力过低已很难正常工作,机房精密空调通过可控的室外冷凝器,仍能正常保证制冷循环工作。

5.机房精密空调一般还配备了专用加湿系统,高效率的除湿系统及电加热补偿系统,通过微处理器,根据各传感器返馈回来的数据能够精确的控制机房内的温度和湿度,而舒适性空调一般不配备加湿系统,只能控制温度且精度较低,湿度则较难控制,不能满足机房设备的需要。

综上所述,机房精密空调与舒适型空调在产品设计方面存在显著差别,二者为不同的目的而设计,无法互换使用。计算机机房内必须使用机房精密空调,而针对精密空调,目前,国内许多企业,类似施耐德电气公司已经广泛研究制造,提高了机房内计算机、网络、通信系统的可靠性和运行的经济性。

空调VAV系统和VRV系统的本质区别是什么?

检测所下设制冷空调及船用条件试验室,压缩机试验室、阀试验室、密封件试验室、泵试验室、包装机械试验室、分离机试验室、换热器等八个产品试验。现拥有各类检验装置62台套,能够按国内、国际标准的要求,可对以下产品的质量性能、安全、节能、可靠性等全性能进行检测:

(1)制冷空调产品,包括房间空调器、单元式空调机、中央空调机组、各类冷水(热泵)机组、风机盘管机组、电冰箱、冷柜(含食品冷柜)、冷凝机组,以及产品的配件等;

(2)家电产品,包括电风扇、热水器、洗衣机等家用和类似用途的产品;可对家用产品进行电磁兼容的干扰和抗干扰的检测等;

(3)风机产品;

(4)压缩机,包括空气压缩机、气泵、空气净化器、各类工艺压缩机等产品;

(5)阀门,包括安全阀、截止阀、球阀、蝶阀、疏水阀、气瓶阀等,以及阀门电动装置、管件、等产品,可以做产品耐火和爆破试验,可以对在疫产品检查鉴定等;

(6)泵,包括离心泵、往复泵、喷射设备等产品;

(7)密封件,包括机械密封、干气密封、填料静密封等产品;

(8)分离机械,包括分离机、离心机和过滤机;

(9)包装机械,包括给类包装设备、食品包装机等产品;

(10)换热器,包括各类换热和交换能量设备。等等。

中央空调降噪求助

浅议VAV变风量空调系统与VRV多元变频空调系统的区别

一、VAV与VRV系统的简介

1、VAV系统简介:

变风量系统(Variable Air Volume System, VAV系统)本世纪60年代诞生在美国。是相对于定风量(CAV,Constant Air Volume)系统而言的,VAV技术的基本原理很简单,就是通过改变送入房间的风量来满足室内变化的负荷。由于空调系统大部分时间在部分负荷下运行,所以,风量的减少带来了风机能耗的降低。VAV系统追求以较少的能耗来满足室内空气环境的要求。

2、VRV系统简介:

VRV空调系统全称是Varied Refrigerant Volume,简称VRV,是一种可变制冷剂流量的空调系统,它以制冷剂为输送介质,室外主机由室外侧换热器、压缩机和其它制冷附件组成,末端装置是由直接蒸发式换热器和风机组成的室内机。从90 年代初起,得到了迅速的发展,由于该系统所具有的使用灵活、节能和易于安装等优势,使该系统大量地运用于办公楼。VRV空调系统是在电力空调系统中,通过控制压缩机的制冷剂循环量和进入室内换热器的制冷剂流量,适时地满足室内冷热负荷要求的高效率冷剂空调系统。VRV空调系统需用变频压缩机、多极压缩机、卸载压缩机或多台压缩机组合来实现压缩机容量控制;在制冷系统中需设置电子膨胀阀或其它回路,以调节进入室内机的制冷剂流量;通过控制室内外换热器的风扇转速积,调节换热器的能力。在变频调速和电子膨胀阀技术逐渐成熟之后,VRV空调系统普遍用变频压缩机和电子膨胀阀。

空调系统在环境温度、室内负荷不断变化的条件下工作,而且系统各部件之间、系统环境与环境之间相互影响,因此VRV空调系统的状态不断变化,需通过其控制系统适时地调节空调系统的容量,消除其影响,是一种柔性调节系统。其工作原理是:由控制系统集室内舒适性参数、室外环境参数和表征制冷系统运行状况的状态参数,根据系统运行优化准则和人体舒适性准则,通过变频等手段调节压缩机输气量,并控制空调系统的风扇、电子膨胀阀等一切可控部件,保证室内环境的舒适性,并使空调系统稳定工作在最佳工作状态。

二、VAV与VRV系统的优点

1、VAV系统优点:

节能:由于空调系统在全年大部分时间里是在部分负荷下运行,而变风量空调系统是通过改变关风量来调节室温的,因此可以大幅度减少送风风机的动力耗能。当全年空调负荷率为60%时,它可节约风机动力耗能78%。全年节约风机能耗 55%~65% ,节约冷吨数 20%~30% 。附带的好处:节约空调设备容量、管道、空调电力增容费、电力设备、管道空间等。在冬季及过渡季节新风经济循环,节约运行费用 60%~80% 。

新风作冷源:因为变风量空调系统是全空气系统,在过渡季可大量彩新风作为天然冷源,相对于风机盘管系 统,能大幅度减少制冷机的能耗,而且可改善室内空气质量。

不会产生冷凝水:因为它是全空气系统,可以避免产生冷凝水造成的滴漏污染吊顶和霉菌问题

系统的灵活性较好,易于改、扩建,尤其适用于格局多变的建筑,例如出租写字楼等。当室内参数改变或重新隔断时,可能只需要更换支管和末端装置,移动风口位置,甚至仅仅重新设定一下室内温控器。

系统噪声低,不存在现场噪声。办公区可达到较低的噪音水平。

不会发生过冷或过热。

提高智能化程度。提高楼宇智能化程度,提高区域舒适化程度 。

减少综合性初期投资,而且维修量小,寿命长。全年保持恒温 。系统结构简单,维修工作量小,使用寿命长。提供更为洁净的空气,符合世界高级建筑IAQ标准。

2、VRV系统优点:

一台室外机通过管路能够向若干个室内机输送制冷剂液体。通过控制压缩机的制冷剂循环量和进入室内各换热器的制冷剂流量,可以适时地满足室内冷、热负荷要求VRV系统具有节能、舒适、运转平稳等诸多优点,而且各房间可独立调节,能满足不同房间不同空调负荷的需求。但该系统控制复杂,对管材材质、制造工艺、现场焊接等方面要求非常高,且其初投资比较高。

VRV变频空调系统的相对于定速系统具有明显的节能、舒适效果。

VRV空调系统依据室内负荷,在不同转速下连续运行,减少了因压缩机频繁启停造成的能量损失;在制冷/制热工况下,能效比COP随频率的降低而升高,由于压缩机长时间工作在低频区域,故系统的季节能效比SEER相对于传统空调系统大大提高;用压缩机低频启动,降低了启动电流,电气设备将大大节能,同时避免了对其它用电设备和电网的冲击。

VRV空调系统具有能调节容量的特性,在系统初开机时室温与设定温度相差很大,利用压缩机高频运行的方式,使室温快速地到达设定值,缩短室内不舒适的时间;系统调节容量使室温波动很小,改善了室内的舒适性;极少出现传统空调系统在启停压缩机时所产生的振动噪声,且室内机风扇电机普遍用直流无刷电机驱动,速度切换平滑,降低了室内机的噪声。由于VRV空调系统比冷水机组的蒸发温度高3℃左右,其COP值约提高10%;结构紧凑,体积小,管径细,不需要设置水系统和水质管理设备,故不需要专门的设备间和管道层,可较大程度地降低建筑物造价,提高建筑面积的利用率;室内机的多元化,可实现各个房间或区域的的独立控制;而且热回收VRV空调系统,能在冬季和过渡季节,向需要同时供冷和供热的建筑物提供冷、热源,将制冷系统的冷凝负荷和蒸发负荷同时利用,大大提高能源利用效率。因此,多元VRV空调系统将是今后中小型楼宇空调系统的发展主流之一

三、VAV与VRV系统的缺点

1、VAV系统的缺点:

每层楼需要20~25m2的空调机房面积

所有变风量末端都需要进口(国内有组装)

不适合在工业厂房,洁净房等有换气次数要求的场合使用

缺少新风,室内人员感到憋闷;

房间内正压或负压过大导致室外空气大量渗入,房门开启困难;

室内噪声偏大。

系统运行不稳定,尤其是带“经济循环(Economizer Cycle)”的系统;

节能效果不明显。

系统的初投资比较大;

对于室内湿负荷变化较大的场合,如果用室温控制而又没有末端再热装置,往往很难保证室内湿度要求。

对一个系统来说,问题并不一定时时刻刻都存在,可能在某个工况发生,在另一个工况又消失了。

2、VRV系统的缺点:

多元VRV空调系统发展至今,无论是在制冷系统,还是在控制方法上都取得了很大的进步,但仍存在以下几方面的问题,尚需进一步深入研究。

舒适性:有待于新的传感器的开发和现代控制理论的应用,以推进智能空调系统的发展。

稳定性和节能性控制问题:研究制冷系统的各调节部件对系统特性的影响规律,实现系统的稳定调节和节能控制。

控制器的可移植性问题:深入研究制冷系统的特性规律,研制出适合于大小系统兼容,热泵型和热回收型系统通用,移植性较强的控制器。

系统综合性能评价问题:VRV空调系统特别是热回收型系统,由于各换热器的功能和温度条件不尽相同,如何评价系统的综合性能,尚无合理和实有的方法。

制冷剂替代问题:由于VRV空调系统的管道接头较多,增加了制冷剂泄漏的可能性,且系统的内容积过大,增大了制冷剂充灌量,在HCFC控制实施后,系统价格会大大上升。所以,减少制冷剂充灌量和减少泄漏是系统开发过程中应该重视的问题,同时应加强对HCFC22的替代工质在VRV空调系统中的应用研究。

四、VAV与VRV系统的应用选择

1、VAV系统的应用选择:

设计人员在系统设计时首先面临的问题可能就是用什么系统形式。某一种系统非常适合这个建筑,可能就不适合那个建筑。VAV系统适合多房间且负荷有一定变化的建筑。对于负荷变化较小的建筑物用VAV系统的意义可能就不大了。

每种系统形式都有它的优点和缺点,不存在十全十美的系统。VAV系统容易产生噪声问题,那么对于影剧院和电台录音棚这类声学效果要求较高的场合,可能最好不要用VAV系统。对某一系统优劣的评价关键在于实际运行中显现出来的优点多还是缺点多。设计人员在方案设计(概念设计)阶段所做的工作主要是综合各方面因素(建筑物用途、建筑格局、室内负荷变化特点、工程造价、系统运行维护以及业主对将来改扩建的考虑等等),进行技术经济比较,权衡利弊。总之,是否用VAV系统要因地制宜,不能为了用而用。

2、VRV系统的应用选择:

VRV空调系统具有典型的中央空调系统的特征,室外机、室内机乃至控制系统是相互独立、按需组合的。VRV空调系统需分部件按功能不同确定设计试验工况参数,进行产品设计和性能试验,实现部件的标准化、系列化,降低生产、应用成本。

对于固定配置的VRV空调系统,如一拖二、一拖三系统,用作家用空调时在安装规范方面宜以整机对待。可归于房间空调器类进行管理,以最大限度的控制应用成本。

对于非固定配置的VRV空调系统,必需分部件按功能不同明示甚至统一相应的设计试验工况参数。在工程应用上,制订相应的设计、安装规范,纳入建筑设备工程项目管理范畴。

VRV空调系统内部工况参数取决于气候条件、系统和能效指标要求,应在全面系统研究的基础上确定。

中央空调末端设备选择时应注意的几个问题?

用合理的施工方法以降低噪声还是主要的措施,具体可从以下儿方面考虑:

A、设备安装:新风、空调机用阻尼弹簧减振器安装,风机与风管连接用软连接,新风机与水管连接用软接头,风机盘管用弹簧吊钩,风机盘管与水管连接用软管。在空调机房内进行吸音处理,比如住空调机房内用隔声材料做成围护结构,以防止设备噪声的外传,或在机房内贴吸声材料,用凹凸形立体吸声板,做机房的墙面或吊顶板,以增强吸声效果,机房也尽量减少门窗,必须使用的门窗也应用吸声Iq窗或吸声百叶窗,以尽量减少设备噪声的外传。

B、水管安装:水管安装要严格执行国家规范,冷冻水主干管及冷却水管吊架要用弹簧减振吊架,而且吊架不能固定在楼板上,应尽量固定在梁上,或任梁与梁之间架设槽钢横梁固定。水管穿过楼板或过墙必须用套管,且套管与水管之间要用不燃材料填封。

C、风管安装:风管制作安装要严格执行国家规范进行施工,在风机进出口安装阻抗消声器,新风进口用消声百叶,风管适当部位设置消声器,风管弯头部位设置消声弯头,空调和新风消声器的外部用优质保温材料保温。与静压箱一样内贴优质吸音材料。由于送回风管均用低风速、大风量以降噪声,风管截面积都比较大,如果风管安装强度及其整体刚度不够,就会产生摩擦及振动噪声,建议风管吊架尽可能用橡胶减振垫,确保风管不产生振动噪声。

D、冷冻水管主管支架安装:比如某工程水管主管管径较大,且有轻微振动,根据我在多年来的安装工程的实践经验,发现噪音可能会沿冷冻主管传递,出口处一般可达到70dB~80dB,距出口20m后可降至50dB。而传来的轻微振动,沿刚性导体将无限传递。随着时间的推移,将会对设备运行带来一定的伤害。经过同行们的研究、试验,对刚性支架作出改进,即在原主管刚性支架上加弹簧减振器,这样使得噪音及振动得到有效消除。即噪音及振动在楼板与刚性支架之间的弹簧减振器得到有效控制。

降低中央空调噪音办法:增大出风口面积,降低风速的试处理,使该空调风机盘管的送风噪声得到较好的控制。

降低中央空调噪音办法:有效控制房间内国家允许噪声标准,可从以下几方面去控制:

A、设备设置的位置及选型的优化。

B、风管系统设计优化。

C、设备的安装减震及管道隔振。

风机盘管的风量与制冷面积的换算如:100平米

一、空调箱选择时应注意的几个问题

我们在进行空调箱选型时首先根据空调系统负荷计算结果确定该空调箱所需风量、风压、冷热量以及出风口噪声和空气过滤要求。但是由于设计或制造等多方面原因在使用中我们常发现选用的空调箱存在这样或那样的问题,主要有风冷不足、冷量不足、箱体外表结露、凝水盘溢水、表冷器段后带水等问题。因此这就要求我们在设备选型时严格把好质量关,防患于未然。自己的体会有下面几点:

1、箱体保温;为防止箱体外壳结露,国家标准规定箱体保温层热阻应不小于0.68M-2/KW同时还要防止箱体各段联接处产生的冷桥。保温材料目前多用PEF或聚氨酯发泡。

2、迎风面风速:目前有些厂家为了缩小产品的外形尺寸,往往将空调箱的迎风面风速取得较大,这样就造成了空调箱表冷段后带水的后果;如档水板设计不合理,那这个问题就更严重了。所以在选型时我们应将表冷器迎风面风速控制在2~2.5M/S为宜。

3、漏风指标:国家标准规定,组合式空调箱在箱内静压为700PA时,机内漏风率不得超过3%。在实际使用中我们发现现场空调箱漏风率竟有高达10%的现象。经分析这主要是由下面几点原因造成的。(1)密封材料性能不好。(2)机组结构设计不合理(3)现场安装质量差(4)大风量空调箱箱体刚性差,当启停运行时易产生变形。

4、冷热量不足:国内厂家的表冷器设计选型依据多以小样试验结果的经验公式进行放大计算,这本身就存在一定误差,且有某些企业自己没有试验条件而抄袭其它厂家的相关样本;这是目前造成国内许多厂家此类产品冷热量不足的主要原因。所以我们在对生产厂家进行实地考察时一定要亲自了解其产品测试手段。

5、凝水盘溢水:这个问题是目前空调箱使用中发生最为普遍的一个现象,用户的反应也最为强烈。造成这个问题的原因有这样几点:(1)迎风面风速过大。(2)表冷器处于负压段,机组出厂时没设水封。(3)凝结水盘的长度和深度不够。关于迎风面风速过大的问题前面已经讲过,对于机组所设置水封的高度以及凝结水盘的长度和深度值的确定,我们应在订货时根据表冷段所处负压值与厂家协商确定。

除了以上几个主要问题外,我们在考察时还应注意下面几个"小"问题。

1、用双风机的组合式空调箱送风机风压应大于回风机的风压,否则会发生新风吸不进来的现象。

2、空调箱面板材料应优先用钢板(外表喷塑)如用玻璃钢材料做面板应注意防火问题。

3、大风量机组内应设分风板以保证气流能够增均匀流经过滤器和表冷器。

4、对大风量机组宜考虑将某些功能段合并(如将表冷段与加热段合并)以减少机组长度。

5、大风量机组应考虑将风机电机设置于箱体外部以节约能耗。

二、风机盘管选择时应注意的几个问题

我国在风机盘管检测指标中有如下一些项目:风量、供冷量、供热量、单位风机功率供冷量、水阻力、A声级噪声、凝露、凝结水处理、电机绕组温升、热态绝缘电阻、泄漏电流、接地电阻这些指标。但我们在工程中评价一台风机盘管质量好坏的标准主要还是看其风量、冷量、噪声、耗电量这几个指标。

平时在选择风机盘管时不少人认为盘管技术早已过关,每个厂家的产品都大同小异,因而往往只从价格考虑。从上表我们可看出不同厂家的产品在冷量、耗电量、噪声方面确有不少差异。但仅从耗电量来讲,同款产品最大耗电量与最小耗电量之间相差23W,如果以某办公室盘管每天运行10小时,每年运行200天计算(年使用系数取0.6),每年可节约27.6度电,以每度电1.1元计算年节约运行费用30元。如果两者的价格相差百元,那增加的初投资将在三年多的时间中得以收回。这仅仅是经济帐不包括低噪声盘管对提高工作效率以及工作人员身心健康所带来的好处。下面将谈谈具体选型时应注意的几点。

1、盘管冷量不足:这个问题是目前用户投诉最多的一个问题。造成这种问题的主要原因是不少企业没有自己的测试手段,样本上的参数从其它厂家的样本上抄袭的,且自己生产的盘管热工性能又较差(这主要是由翅片形式、胀管质量、生产工艺等造成)。因此建议在进行项目考察时应注意该厂家的测试设施与手段,很难想象一个没有自己测试装置的厂家能产生出好产品来。

2、风量:目前我们在进行具体工程设计中往往是根据计算所得冷负荷通过查阅有关厂家的样本来选择风机盘管。如何考虑盘管的风量是一个问题。国内市场上多数厂家的盘管都只有一种三排管的,但也有厂家提供二排管的盘管。笔者认为对于大多数民用建筑空调系统而言选择二排管的盘管更为有利(对高湿度场合例外)。这是因为二排管的产品在同样冷量下风量较大,这将增大空调房间的换气次数,有利于提高空调精度及舒适性。同样冷量下,用小温差、大风量送风,会取得比大温差、小风量送风更佳的空调效果。

3、机外余压:由于我国目前的盘管国家标准规定风机盘管的风量、冷量及噪声等参数的测试均是在机外静压为O的条件下进行的。但在实际使用中盘管出风口前往往要接一小段风管及出风百叶,另外有的工程中还设有回风箱,因此在实际使用中会发现盘管的实际风量要小于其名义风量,这样的后果就是房间风量减小,送风温差增大,空调的舒适性下降。有的设计人员为避免这种情况就在选型时按盘管的中档风量选取,以避免风量不足,但却增大工程的初投资。因而笔者建议在国内测试标准尚未改变的情况下,我们在盘管选型时应该优先选择有余压(一般应为10~15PA)的机组。

4、噪声问题:这是目前国内产品与国外产品差距较大的一个地方,也是目前盘管因质量问题而被投诉的一个要点。造成这一问题的原因多在于盘管中的电机与风机配置及匹配的不合理。另一个原因是厂家质量管理不严,装配工责任心不强,造成产品质量不稳定。所以我们在考察一个厂家产品时应查阅其由国家权威质检部门出具的该款产品(注意一定要是我们准备订货的那几款产品)噪声检测报告。对于选用批量较大的工程项目应现场抽样送有关质检部门检测。

除了以上讲的几条外,在盘管选型时还应注意其是否有质检部门出具的凝露试验合格报告。其凝结水盘保温应用整体保温,水盘应优先选择长盘。此外在同等条件下应优先考虑外型小重量轻的产品。关于电器方面的参数目前国内绝大多数厂家的产品均可达标,可不做为考察的重点。

风机盘管安装时应该注意哪些事项?

风机盘管机空调的机关知识:

风机盘管机组作为半集中式空调系统的末端装置,其工程应用非常广泛.从总体上看,目前国内的风机盘管在名义供冷量、噪音、电机输入功率等项指标上,已接近于或优于国外产品,而风量则普遍低于国外同型号产品.但是,真正影响空调效果的,并不只是这些参数的绝对值大小,还取决于这些参数之间的配匹是否合理.因为我国的行业标准?中,对供冷量、噪声、输入功率等都有严格规定,因而形成了国产风机盘管高冷、低噪、小风量的总体特点,而风量与冷量的搭配(焓差)则不合理,这给选型工作的合理性和经济性带来问题.

2目前风机盘管选型中常见的问题

2.1按冷负荷选型的弊端

按空调房间的最大冷负荷选用风机盘管是空调系统设计中常见的做法,其目的是保证高峰负荷时的房间温度.而实际上空调房间运行的绝大部分时间都不会处于高峰负荷,使供冷量过剩,而切换到中、低档运行以降低冷量输出,从而维持房间的

热平衡.可见机组实际输出冷量取决于空调负荷的变化,与机组的名义供冷量关系不大.故供冷量只是实现空调的必要条件,但不能决定空调的使用效果.评价空调效果好坏,一是房间平均温度与设定温度的接近程度;二是室温分布(梯度)和变化(波

动)幅度.送风温差越大,换气次数越少,室温梯度和波动幅度也越大,故送风温差和换气次数才是影响空调精度和舒适性的主要因素.文献

[2]中明确规定了不同精度空调房间的最大送风温差和最

低换气次数.空调精度越高,要求送风温差越小、换气次数越多.可见按最大冷负荷选型,仅满足高峰负荷时的房间温度是不够的,还需满足适当的送风温差和换气次数,才能保证房间的舒适性要求.

2.2不能保证足够的送风量

因送风温差、换气次数是决定空调精度和舒适性的主要因素,故保证足够的风量是实现预期空调效果的先决条件.这里所说的风量是指机组使用时的实际送风量,而不是产品样本中的名义风量(GB/T 19232-2003规定:名义风量须在盘管不通水、空气14—27℃,风机转速为高档,对低静压机组不带风口和过滤器等出口静压为12Pa测得的风量值).而实际使用中,暗装机组因要加进、回风格栅、过滤器和短风管,加上盘管表面凝水、积尘、滤网堵塞等诸多因素影响,会导致风阻增大、风量下降,使得实际风量远低于名义风量(笔者通过大量实验证明:一般低l5—25%).由于风量的明显减少,影响空调效果,主要带来以下问题:

1)换气次数少;

2)送风速度低,影响送风射流射程;

3)送风温度低,影响空调舒适度和可能造成送风格栅结露等.

另一方面,对于风机盘管机组本身而言,风量的下降直接影响盘管的换热效果,使盘管的制冷量下降,这样就会形成机组的实际性能(风量、冷量)都要低于名义值的不合理现象.因此,

产品样本上的名义风量、冷量只能作为选型时的参考,而不能作为选型的依据.加大风量不仅能增加换气次数、降低送风温差、改善空调效果,而且由于冷量也会提高,可相应地缩小机组的体积.故提高风量是风机盘管的发展方向之一.当然,风量的

提高也要受空调区域允许风速的制约.另一方面,为控制送风温差,冷量与风量之间应保持适当的匹配关系.全冷量与风量(质量流量)之比就是盘管进出口空气的焓差,它决定了机组供

冷能力和送风温差的大小.从控制送风温差角度,焓差过高不利,而国内的风机盘管的焓差和送风温差普遍偏高.按GB/T 19232-2003规定的名义参数计算,焓差为15.88k.1/kg,送风温差约为l2℃.若按风量下降20%计算,实际的焓差将超过19.85kJ/kg,实际的送风温差会高达l5℃,显然已超出文献[2]中规定的允许送风温差(6_-lO℃),也就无法保证空调精度和舒适性要求.

2.3忽略风系统的阻力计算

一般地风机盘管空调系统的风系统规模较小,构成简单,阻力不大,约在l5—5OPa范围内,但仅仅这一点阻力就足以对风机盘管系统的实际送风量有至关重要的影响.风机盘管分为低静压机组和高静压机组两类,在GB/T 19232-2003中,对于低静压机组,带风口和过滤器等出口静压为OPa,不带风口和过滤器等出口静压为12Pa,也就是说,风口及过滤器等构成的阻力为12Pa.而美国空调与制冷学会标准《房间风机盘管空调器》hRI 440—84中明确规定:出厂时不带送、回风格栅或过滤器的风机盘管,应在12.4Pa机外静压下测试风量u.这一规定正是为了保证实际风量与名义风量相符.而我国大气含尘量较高,滤网易堵塞,理应机外静压比12.4Pa高,相比之下,我国的行业标准中规定的测试条件合理性有待商榷.以客房中卧式暗装、吊顶回风FCU为例,附加阻力至少应包括回风格栅、回风滤网、送风短管及送风格栅阻力.若回风风速为1.Om/s,送风风速为1.5 m/s,经计算此时机外阻力为16Pa,若选用低静压机组肯定也会造成风量下降,此例在工程应用中应属于附加阻力较小的一例,对风量影响尚且如此,可见FCU风系统附加阻力不可忽视.再者,对于高静压机组,若不经过阻力计算,而是认为选用一个高静压机组就能满足要求的做法也是不合理的.

再举一例,图l为某办公楼安装于吊顶内的卧式暗装FCU及相应的风系统,FCU的名义风量为750 m/h,散流器喉部风速2.5 m/s,回风风速1.5 m/s,经计算知FCU本体之外总阻力约为61Pa,其中散流器、回风口滤网阻力占总阻力的80%.此时即便用机外静压30Pa或50Pa的高静压型FCU,风量也会下降15%左右.因此,在具体工程中笼统地提出高静压要求和认为只要用高静压机组就不必进行相关风系统分析的做法是不可取的.

3风机盘管机组改进设计的途径

3.1保证风量的“名”“实”相符

造成机组风量“名”“实”不符的根本原因就在于:

1)湿工况下翅片管表面的水膜和水滴大大地增加了空气的流动阻力,这是主要原因;

2)名义测试工况与实际使用工况不同.因此,解决风

量的“名”“实”不符问题,设计时可从以下几方面入手:

(1)盘管排数的选择

目前国内风机盘管多用9.53mrn管径的三排盘管,这种结构型式的盘管空气阻力较大.根据大量的盘管试验结果表明:相同结构参数的表冷器排数由三排减至二排,空气阻力约降30%t圳,这样在机组输入功率不变的条件下增加风量,以此来解决机组名义风量与实际风量相差太大的问题,而且又保证达到标准规定的供冷量要求.其理论依据是:虽然盘管由三排减至二排,传热面积减少,但盘管的空气阻力下降,风量明显增加使盘管传热性能增强的原理.并且2排管风机盘管省料、节能,多数场合使用效果要优于3排管机组,经济效益显著.

(2)翅片间距的确定

翅片间距的大小是影响风机盘管传热性能和空气阻力的主要因素之一.由理论分析和实验结论可知,翅片间距对风机盘管传热性能的影响是很复杂的.一般说来,换热系数会随着间距的增大而增大,而阻力则会随着间距的增加而减小.但是,当翅片间距变小时,单位体积的换热面积增加.因此,虽然换热系数变小了,但换热量却有可能是增加的.因此,合理确定翅片间距的大小使得换热量相同时空气的阻力最小,即单位阻力换热量最大应是优化的翅片间距.实验研究结果表明lJ 0J:对于水冷式盘管,在常用的翅片间距范围内,3.3mm左右较好.

(3)翅片形状和表面亲水处理

盘管在供冷工况时,对空气的处理是一个降焓析湿过程,在盘管翅片的表面会不断形成水珠,大部分水珠在重力作用下,沿着翅片由上往下流淌至凝结水盘,也有一部分挂贴在翅片表面,这部分水珠使得盘管的阻力增大,从而减少了出风量.对于

相同规格的盘管来说,翅片的析水速度与翅片的形状有关,同时也与翅片表面是否做亲水处理有关.有实验数据表明:相同情况下,湿/干工况风量比由条缝型翅片的75%提高到无缝型翅片的90%;由翅片表面未做亲水处理的88%提高到亲水处理的99%t制,可见,翅片的形状和表面亲水处理对机组的出风量有重要影响.

3.2保证机外静压和风量

因盘管(特别是暗装机组)在使用中风量会有大幅度衰减,因此为克服送风阻力必须具备一定的机外静压,以保证所需的风量.为满足用户的不同使用要求,国外厂家提供有低噪声、标准型、高静压三种机型供用户选择.低噪声机组的机外静压一般低于lOPa:标准型机组为15—25Pa;高静压机组高达30—5oPa.一般空调场合宜使用标准型机组,高精度及大面积房间则应考虑选用高静压机组,低噪声机组一般仅用于对噪声水平要求严格的

场合,如高星级饭店中的豪华客房.因此,在选用国产暗装风盘管时,建议选择机外静压不低于20Pa的产品,当用散流器送风且回风带滤网时,FCU的机外余压不宜小于50Pa,方可取得较好的使用效果,当然,生产厂家最好在产品样本上附上机组的风量一机外静压曲线,以方便于机组选型时参考;并且应生产高低不同的机外静压机型以供不同的使用场合选用.

3.3提供多样化焓差的机组

按照我国行业标准,对于某一型号的机组只能提供单一焓差(因供冷量和风量一定),并且焓差偏高,使得机组送风温差偏大,用在高精度、要求严格的空调场合还必须取一定的补救措施,比如可用改变新风参数来进行调节.而国外的风机盘管具有多种焓差,一般会提供2排管和3排管两种不同冷量的盘管,分别配上低噪声、标准型或高静压三种不同风量的风机,形成名义风量相同,但实际风量、冷量、焓差都不相同的6种机型,可以满

足不同地区、不同围护结构、不同精度要求空调房间的使用要求.因此,国内生产厂家也应从实际使用情况出发,研制出多样化焓差的新型机组,以满足不同空调场合的灵活选用.

3.4合理的水路流程目前,多数厂家风机盘管的水路流程用单一的3进3出的接法.合理的水路设计应满足:

1)较高的水流速,以保证较高的换热系数;

2)较低的水阻力,保证水泵较低的能耗,尤其是高层建筑

空调系统:

3)水和空气的逆交叉流动,以保证最大的换热温差.然而实际水通路设计中,增强换热系数往往会带来水阻力的增加.因此,优化的水通路设计应做到:

1)不同长度的盘管应用不同的水路设计,如大长度盘管用多路并联、加大过水截面积,既能保证换热量又能有效地降低水阻力;

2)保证进、回水之间5℃温差,以保证合适的流量、合适的水流速,从而保证换热性能,同时又不会使水阻过大.3)不同使用工况的盘管,其水路应区别设计.若进风参数不同,空气处理过程必然不同,因此,水通路设计应有所不同,以保证冷量、

水阻力的合理.4)为冬季防冻放水及防止管内空气滞留,水路应设计成由下至上的单向行程比较合理、可行.

3.5提供全冷量焓效率和显冷量效率的计算公式

由于样本上提供的风量、冷量是名义工况下测定的,而在实际使用中,名义风量和名义冷量一般都不会出现,依此作为选型依据是不合理的.因此,厂家在产品样本上除了标明名义风量、名义冷量外,还应提供每一种型号机组的全冷量焓效率和显冷量效率的计算公式,以供设计人员选型时根据不同的设计工况进行设计风量、设计冷量的计算,以便合理选用风机盘管,这样既保证满意的空调效果,又能节省初投资和运行能耗,一举两得,应是业内人士共同追求的目标.

4结论

4.1风机盘管的实际送风量是保证空调效果理想的关键,产品设计时应考虑各参数的合理配匹,另一方面,可从盘管排数、翅片间距、翅片形式和表面做亲水处理等方面考虑在湿工况下提高机组的送风量,减少风侧阻力.

4.2风机盘管的风系统设计时应进行阻力计算和校核,使之与配匹风机相吻合,认为FCU风系统规模小而不必进行风阻计算是不妥的.

4.3生产厂家应提供多样化焓差、多种机外静压的机型,以满足不同的使用场合;还应根据盘管不同长度、不同使用工况设计成不同的水路流程,以保证水侧较高的换热系数和较低的水阻力.

4.4产品样本上最好应附上机组的风量一机外静压曲线,以及全冷量焓效率和显冷量效率的计算公式,以便于设计人员在机组选型时根据不同的设计工况合理选用,既保证空调使用效果,又节省初投资和运行费用.

1、基本常识

(1)室内风机盘管要水平安装。

(2)用直径Φ10mm吊杆吊装,吊杆做防锈处理,与内机的固定螺母紧固不松动。

(3)吊装位置符合室内空气循环和图纸要求,与楼板之间要有一定的间距。

(4)使用分集水器的安装方式:水模块与分水器之间主管用Φ40或者Φ32的PPR管,分集水器与风机盘管之间使用铝塑管连接,流量分配均匀不易发生泄漏。水压试验压力0.6Mpa保持2小时无泄漏。

(5)管路必须保温,保温层厚度20mm,冷凝水管路保温层厚度为10mm。

(6)用U型卡或者其它方式固定,对保温材料的压缩量不大于2至3毫米。

(7)冷凝水管路要保持一定坡度,对于自然排水的风机盘管的排水出口的坡度不小于1%,确保排水顺畅。满水试验不漏水,排水试验不存水。

(8)管路用吊支架固定。

2、风机盘管安装注意事项

1、 ?当吊顶高度超过3米时,不宜选用天花式机型。

原因:吊顶太高选用天花机,暖风吹不下来,影响制热效果。

2、冷凝水管与机组之间应用软管连接。

原因:不使用软管连接机组运行时产生的振动将导致水管脱落漏水,管路振裂及噪音等故障。

3、当房间高度超过3米时,不宜用顶吹风散流器风口,应用双层百叶风口下吹风口。

原因:冬季暖风吹不下来,影响制热效果。

4、室内气流组织要合理,避免气流短路、断路。

原因:短路主要是指出风口和回风口布置不合理,送风未到达人活动的范围就通过回风口回到了机组。断路主要是指出回风不在同一空调区域或出风达不到空调区域,短路及断路都将严重影响制冷、制热效果。

3、风管安装注意事项

1、风机盘管必须安装回风箱。

原因:没有回风箱,空调区域室内空气不能有效循环,导致制冷、制热效果差。

2、出风口、回风口及风管尺寸、材料符合规范要求。

原因:风口、风管过小,必然导致风速偏高或风量不足,产生噪音、制冷制热差果差。一般以出风口风速不大于2m/s确定出风口尺寸,回风风速不大于1.5m/s确定回风口尺寸。

3、风管与出风口之间必须用帆布等软性连接。

原因:如不是软连接,机组运行时的振动将沿风管传递,导致震动噪音。

4、当用软风管时,软管长度不应超过4米。

原因:一般是FP-136WA至238WA机组用软风管较多,且软风管的阻力大,而机组静压小,若接管太长,会使最远的风口风量小和各个风口间风量不均匀。

4、水系统安装注意事项

1、风机盘管与水管连接时必须使用不锈钢软接管。

原因:可以防止机组运行时振动传递到水管,减少噪音和管道振动松脱、开裂漏水等故障。

2、风机盘管与水管相连的软接管安装必须是水平直接,不得弯曲。

原因:因为软接管弯曲过度时,薄弱处会导致破裂漏水。

3、水管与风机盘管相连时,应在进水管上安装“Y”形过滤器。

原因:防止水系统杂质、赃物进入风机盘管损坏和堵塞换热器。

4、在有节能要求的系统安装电动二通阀时,必须将其安装在回水管上。

原因:保证风机盘管所需求的正常水流量。