风机盘管局部阻力系数_风机盘管阻力多少pa
1.空调工程施工技术工艺及验收标准?
2.中央空调水泵的选型
3.急急求助:五星酒店客房节能降耗的方法
4.什么是暖基础?
5.中央空调冷却水泵和冷冻水泵的区别
机组水阻+末端水阻+55*2(供、回管)*200(单位比摩阻,包括了沿程在阻力和局部阻力)*1.1~1.2(安全余量)
如不计算,依估计,扬程在18~22m就够了
注意管道水流速度,控制在1.5m/s以下。
空调工程施工技术工艺及验收标准?
1概述
随着经济建设的发展,商用建筑(写字楼、宾馆饭店、大中型商场等)大量兴建,19年全国房屋建筑竣工面积达62244万平方米,其中住宅占53.8%、商业建筑占25.4%[2].目前国内兴建的用中央空调的商用建筑普遍存在着高能耗的问题,例如清华大学在1998年对北京市的十家营业较好的大商场进行了全面的测试和统计,这些商场的全年运行能耗平均大约是188 kwh/m2.a,而气候条件大致相当的日本的同类建筑的平均全年能耗大约是135 kwh/m2.a,也就是说北京市的商场的能耗要比日本高出将近40%。空调能耗是商业建筑的能耗的主要部分,占总能耗的50~60%。初步估计目前全国商用中央空调用电量为400万~450万kW.按重庆和上海的统计,中央空调用电量已分别占全市总用电量的23%和31.1%[3],给各城市的供配电带来了沉重的压力。随着现代化建设的发展,能源供应会更加紧张,将会导致影响经济的持续发展。一般中央空调能耗约占整个建筑总能耗的50%左右,对于商场和综合大楼可能要高达60%以上,因此节约商业建筑空调能耗是刻不容缓的。
空调系统的能耗主要有两个方面,一方面是为了供给空气处理设备冷量和热量的冷热源能耗,如压缩式制冷机耗电,吸收式制冷机耗蒸汽或燃气,锅炉耗煤、燃油、燃气或电等;另一方面是为了给房间送风和输送空调循环水,风机和水泵所消耗的电能。
冷热源的能耗由建筑物所需要的供冷量和供热量决定,建筑物的空调需冷量和需热量的影响因素有室外气象参数(如室外空气温度、空气湿度、太阳辐射强度等),室内空调设计标准,外墙门窗的传热特性,室内人员、照明、设备的散热、散湿状况以及新风量的多少等。风机、水泵的输送能耗受所输送的空气量、水量和水系统、风系统的输送阻力影响,风系统、水系统的流量和阻力的影响因素有系统型式、送风温差、供回水温差、送风和送水流速、空气处理设备和冷热源设备的阻力和效率等。针对上述影响因素和商业建筑的特点,商业建筑空调节能的技术措施可归纳为七个方面:减少冷热负荷、提高冷热源效率、利用自然冷源、减少水泵电耗、减少风机电耗、改进气流组织、改善控制。
2减少冷热负荷
冷热负荷是空调系统最基础的数据,制冷机、供热锅炉、冷热水循环泵以及给房间送冷、送热的空调箱、风机盘管等规格型号的选择都是以冷热负荷为依据的。如果能减少建筑的冷热负荷,不仅可以减小制冷机、供热锅炉、冷热水循环泵、空调箱、风机盘管等的型号,降低空调系统的初投资,而且这些设备型号减小后,所需的配电功率也会减少,这会造成变配电设备初投资减少以及上述空调设备日常运行耗电量减少,运行费用降低。所以减少冷热负荷是商业建筑节能最根本的措施。减少冷热负荷有以下一些具体措施:
2.1改善建筑的保温隔热性能
房间内冷热量的损失通过房间的墙体、门窗等传递出去的。改善建筑的保温隔热性能可以直接有效地减少建筑物的冷热负荷。改善建筑的保温隔热性能可以从以下几个方面着手:
确定合适的窗墙面积比例,不要盲目追求大窗户、全玻璃幕墙。
合理设计窗户遮阳。
充分利用保温隔热性能好的玻璃窗。
2.2选择合理的室内设计参数
商业建筑空调的主要目的是创造一个舒适的室内空气环境,满足人们办公、学习、等的舒适及卫生要求。美国供热制冷空调工程师学会设计手册[1](ASHRAE Handbook)的基础篇里,给出了人体感觉舒适的室内空气参数区域,大约是空气温度13℃~23℃,空气相对湿度20%~80%。
如果夏季设计温度太低或冬季室内设计温度太高,都会增加建筑的冷热负荷。在满足舒适要求的条件下,要尽量提高夏季的室内设计温度和相对湿度,尽量降低冬季的室内设计温度和相对湿度,不要盲目追求夏季室内空气温度过低、过干,冬季室内设计温度过高。
2.3局部热源就地排除
商业建筑中的有些房间,由于使用功能的需要,会在房间的局部产生较大的散热量,例如厨房的灶台、医院消毒间的消毒柜、电话机房的交换机等。在空调系统设计过程中,应考虑在发热量比较大的局部热源附近设置局部排风,将设备散热量直接排出室外,防止热量散发到室内,以减少夏季的冷负荷。但是在运行中,这些排风机可能没有开启或者发生故障并得不到及时的更换和修理,那么这些局部热源就会造成很大的冷负荷,浪费冷量和破坏室内热环境。
2.4控制和正确使用室外新风量
由于新风负荷占建筑物总负荷的20~30%,控制和正确使用新风量是空调系统最有效的节能措施之一。下图为北京某写字楼典型工况的冷热负荷各分项的比例:
图3-1冷热负荷分项比例
由于新风负荷接近总负荷的1/3,所以要严格控制新风量的大小。除了严格控制新风量的大小之外,还要合理利用新风。春秋季或冬季,有些房间仍需供冷,此时当室外空气焓值小于室内空气设计状态的焓值时,可用室外新风为室内降温,可减少冷机的开启量,节省能耗。
减少新风负荷应从以下两方面着手:
不要随意提高最小新风量标准
杜绝非正常渠道引入新风
3提高冷源效率
评价冷源制冷效率的性能指标是制冷系数(COP,Coefficient Of Performance),是指单位功耗所能获得的冷量。制冷系数与制冷剂的性质无关,仅取决于被冷却物的温度T0‘和冷却剂温度Tk’,T0‘越高,Tk’越低,制冷系数越高[4].所以空调系统冷机的实际运行过程中不要使冷冻水温度太低、冷却水温度太高,否则制冷系数就会较低,产生单位冷量所需消耗的功量多,耗电量高,增加建筑的能耗。提高冷源效率可取以下一些措施:
3.1降低冷却水温度
由于冷却水温度越低,冷机的制冷系数越高。下图显示了某离心压缩制冷机的制冷效率与冷却水温度的变化关系:
从右图可以看出,冷却水的供水温度每上升1℃,冷机的COP下降近4%.降低冷却水温度需要加强运行管理,停止的冷却塔的进出水管的阀门应该关闭,否则,来自停开的冷却塔的温度较高的水使混合后的水温提高,冷机的制冷系数就减低了。冷却塔使用一段时间后,应及时检修,否则冷却塔的效率会下降,不能充分地为
冷却水降温。
3.2提高冷冻水温度
由于冷冻水温度越高,冷机的制冷效率越高,右图显示了某冷机制冷系数与冷冻水供水温度的关系。从图中可看出,冷冻水供水温度提高1℃,冷机的制冷系数可提高3%,所以在日常运行中不要盲目降低冷冻水温度。例如,不要设置过低的冷机冷冻水设定温度;关闭停止运行的冷机的水阀,防止部
分冷冻水走旁通管路,经过运行中的冷机的水量较少,冷冻水温度被冷机降低到过低的水平。
4利用自然冷源
由于建筑室内的人员、照明灯光、电脑的设备的散热量的影响,在春秋季当室外空气温度较低时,室内空气温度仍然较高,仍需要供冷。尤其是没有外墙、外窗的内区房间,即使在寒冷的冬季,由于室内的散热量没有途径散发到室外,室内仍需供冷。此时如果开启冷机供冷,不仅由于此时冷负荷较小,冷机制冷系数较低、能耗大,而且极端不合理。
比较常见而且容易利用的自然冷源主要有两种,一种是地下水,另一种是春秋季和冬季的室外冷空气。由于地下水常年保持在18℃左右的温度,所以地下水不仅可以在夏季可作为冷却水为空调系统提供冷量,而且冬季还可以利用水源热泵机组为空调系统提供热量。第二种较好的自然冷源是春秋季和冬季的室外冷空气,此时室外空气较低,可用于空调系统供冷。例如,北京春秋季的室外空气湿球温度一般低于15℃,冬季室外空气湿球温度一般低于0℃,这种温度下的空气是较好的冷源,可用于空调系统供冷。
室外冷空气的利用有两种方法:一是春秋季利用低温室外空气供冷,当室外空气温度较低时,可以直接将室外低温空气送至室内,为室内降温。为了能实现在春秋季利用低温室外空气供冷,空调系统设计时注意要有足够的新风道引入室外新风。第二种方法是利用冷却塔供冷,适合没有足够的新风道为室内送室外新风。具体方法是春秋季利用冷却塔将冷却水温度降低,再通过板式换热器冷却冷冻循环水,被降低了温度的冷冻水送到末端的散冷设备,如风机盘管、空调箱,将冷量送到各个需要供冷的房间。
此外,冬夏季利用全热交换器回收冷热量,也可起到很大的节能作用。为了保证室内空气足够新鲜,满足人们的舒适要求,空调系统需要从室外抽取一定量新鲜空气送入室内,同时将室内污染物浓度较高的空气排至室外。而这部分排风的温度、湿度参数是室内的空调设计参数,冬季比室外空气热,夏季比室外空气冷。通过全热交换器,将排风的冷热量传递给新风,可以回收排风冷热量的70~80%左右[5],有明显的节能作用。
5减少水泵电耗
空调系统中的水泵不仅起着非常重要的作用,而且耗电量也非常大。下图是对北京12家星级宾馆空调水泵耗电量的调查结果:图3-4空调水泵耗电量比例
从上图可以看出,空调水泵的耗电量占建筑总耗电量的8%~16%,占空调系统耗电量的15%~30%,耗电量接近于全楼照明用的电量,所以水泵节能非常重要,节能潜力也比较大。减少空调水泵电耗可从以下几个方面着手:
5.1冷却水开式系统改为闭式系统
开式冷却水系统中冷却水泵的扬程除了要克服冷却水在管道中的流动阻力外,还要提供将冷却水从冷却水池送至高位冷却塔克服水位高差所需要的能量。如果取消冷却水池,将从冷却塔回来的水管直接接至冷却水泵的入口,这种冷却水系统成为闭式冷却水系统,冷却水泵就不需提供将冷却水从制冷机提升到冷却塔克服水位高差所需要的能量,只需提供能量克服冷却水在管道中流动的阻力,所以所需要的水泵扬程要
比开式冷却水系统小得多,因此水泵的能耗也就小很多。例如北京某饭店冷却水系统为开式系统,制冷机房和冷却水池设在一层,冷却塔设在十层屋顶,距地面33米,冷却水泵扬程为67米,配电功率为180kW,而改成闭式冷却水系统后,冷却水泵扬程只需25米,配电功率仅为75kW,每年可节电18万度,合人民币10.8万元。
5.2减小阀门、过滤器阻力
阀门和过滤器是空调水管路系统中主要的阻力部件。在空调系统的运行管理过程中,要定期清洗过滤器,如果过滤器被沉淀物堵塞,空调循环水流经过滤器的阻力会增加数倍。
阀门是调节管路阻力特性的主要部件,不同支路阻力不平衡时主要靠调节阀门开度来使各支路阻力平衡,以保证各个支路的水流量满足需要。由于阀门的阻力会增加水泵的扬程和电耗,所以应尽量避免使用阀门调节阻力的方法。
实际工程中有很多不合理地调节阀门开度,造成水泵电耗无谓浪费的现象。例如北京某饭店的空调水系统的压力分布如下图所示:
根据上图水系统的运行压力分析可以看出,在热交换器和热水循环泵之间的阀门(此阀门的开度仅有25%)和管路消耗了0.2Mpa的扬程,泵后阀门(此阀门的开度仅有25%)消耗了0.08Mpa,而加压泵总的扬程才0.25MPa,加压泵出口的阀后压力为1.12Mpa,还低于热交换器的出口压力,加压泵的加压都消耗在了其前后的管路阀门上了,并不起到真正的加压作用。所以从冬季供热工况而言,加压泵是多余的。如果取消标准层加压泵,每年可节省电耗22万度,节省运行费16.5万元。
5.3提高水泵效率
水泵功率是指由原动机传到泵轴上的功率被流体利用的程度。水泵的效率随水泵工作状态点的不同从0~最大效率(一般80%左右)变化。在输送流体的要求相同,即要求的输出功率相同的条件下,如果水泵的效率较低,那么就需要较大的输入功率,水泵的能耗就会较大。因此,空调系统设计时要选择型号规格合适的水泵,使其工作在高效率状态点。空调系统运行管理时,也要注意让水泵工作在高效率状态点。
5.4设定合适的空调系统水流量
空调系统的水流量是由空调冷热负荷和空调水供回水温差决定的,如下式所示:
(3-1)
式中:
G――水流量,kg/h;
Q――冷热负荷,kcal/h;
Δt――供回水温差,℃。
从上式可看出,空调水供回水温差越大,空调水流量越小,从而水泵的耗电量越小。但是空调水流量减少,流经制冷机的蒸发器时流速降低,引起换热系数降低,需要的换热面积增大,金属耗量增大。所以经过技术经济比较,空调冷冻水的供回水温差4~6℃较经济合理[4],空调热水的供回水温差10℃较经济合理,大多数空调系统都按照5℃的冷冻水供回水温差和10℃空调热水供回水温差的工况设计。
空调循环水泵的耗电量跟流量的3次方成正比,如下式所示:
(3-2)
式中:
N――水泵耗电功率,kW;
S――管路阻抗,表征管路特性的参数,kPa.s/m6;
G――水流量,m3/s;
――水泵效率。
实际工程中有很多空调系统的供回水温差只有2~3℃,如果将供回水温差提高到5℃,水流量将减少到原来的50%左右,所以如果水流量减少50%,水泵耗电量将减少87.5%,节能效果非常明显。但是实际工程中常出现如果减少水流量,有些房间就会出现夏季室温降不下来的情况,而不得不提高流量、降低温差来运行。出现这种情况的原因是水系统中各个支路阻力不平衡,夏季过热的房间所属的支路阻力大,当流量减少时,阻力大的支路水流量减小到不能满足需要的程度,致使房间过热。如果加大流量,阻力小的支路就会超过需要的水流量,那些阻力大的支路的水流量则刚好满足要求,不会出现夏季室温降不下来的情况。这种空调系统的运行是以增大流量和耗电量为代价的。
变频水泵的使用
室外空气温度、湿度参数在整个供冷季和供暖季是在不断变化的,所以空调系统的冷热负荷在一年中也在不断变化,并不保持一成不变。空调的冷热负荷一年中变很大,全年大部分时间的负荷只有最大负荷的50%左右。当空调冷热负荷变化时,由公式(3-1)可知,所需要的空调冷热循环水量也随负荷相应变化。水泵的流量、扬程、轴功率和转速间的关系如下:[7]
(3-3)
式中:
n1,n2――电机转速;
G1,G2――水流量;
H1,H2――水泵扬程;
N1,N2――水泵轴功率;
所以通过改变水泵电机的转速,就可以连续地改变水泵的流量。电机的转速跟交流电的频率成正比。通常市政电网的电流频率是50hz,变频调速水泵就是利用变频器改变电流频率来改变水泵转速和流量。
由于建筑全年平均冷热负荷只有最大冷热负荷的50%左右,如果通过使用变频调速水泵使水量随冷热负荷变化,那么全年平均的水量只有最大水流量的50%左右,水泵能耗只有定水量系统水泵能耗的12.5%,节能效果是非常明显的。
6减少风机电耗
空调系统中风机包括空调风机以及其它送风机、排风机的,这些设备的电耗占空调系统耗电量的比例是最大的,右图显示了北京某饭店空调系统各设备能耗所占的比例:
空调系统风机电耗所占比例最大,风机节能的潜力也就最大,风机的节能也应引起最大的重视。减少风机能耗主要从以下几个方面入手:定期清洗过滤
图3-6某饭店空调系统各设备耗电量比例
定期检修、检查皮带是否太松、工作点是否偏移、送风状态是否合适。
7改善空调系统控制
目前很多商业建筑的空调系统未设空调自控,也有很多商业建筑的空调自控系统因年久失修而无法使用,这使得空调系统的运行管理很不方便。特别是对于面积较大的商业建筑,可能有上百台空调箱、新风机组,运行管理人员连每天启停空调箱都没有足够的精力去实现,更不用说适时地调整空调箱的运行参数,让其节能运行。因此很多商业建筑的空调箱、新风机在空调季节只得让它们全天24小时运行。如果为空调系统加装自控系统,即使是最简单的启停控制,也可以极大节省空调能耗。例如北京某写字楼、饭店,面积13.5万平方米,有空调箱、新风机组90多台,而运行管理人员只有十几人,空调箱、新风机在空调季只能全天24小时运行。如果只为空调系统增加启停控制,每年可节电130万度,节约运行费78万元。
8总结
目前中国商业建筑建设量大,商业建筑的能耗较发达国家高40%左右,商业建筑的节能是非常重要、刻不容缓的一项工作。商业建筑的空调能耗是商业建筑的能耗的主要部分,通过上述具体措施,可以有效的降低商业建筑的空调能耗,并且已建成的商业建筑空调节能具有投资回收期短、效益高的特点,有利于商业建筑空调节能工作的开展。
更多关于工程/服务/购类的标书代写制作,提升中标率,您可以点击底部客服免费咨询:s://bid.lcyff/#/?source=bdzd
中央空调水泵的选型
空调工程施工技术、工艺及验收标准
1、风系统概况:本工程的风管道工程包括低速风系统送、回风管,风机盘管送风接管,新风管,机械通风管,防排烟管等。
2、要施工程序
熟悉审查图纸→施工机具与人员准备→通风管道及部件的加工制作→通风管道及部件的安装→通风空调设备安装→风管漏风量测试→风管保温→通风空调系统试运转及试验调整→工程交工验收
3、主要施工方法
(1)熟悉审查图纸
(2)施工机具与人员准备
依据总体施工进度,确定各主要工种和用工的需要量,以及根据工程进度合理安排相应的施工机具进场,确保工程如期保质、保量完成。
(3)通风管道及部件的加工制作
通风管道及部件的加工制作顺序:熟悉图纸→现场复测→绘制风管系统加工草图→通风管道与部件的加工制作→风管与部件制作质量检查→风管的组配→风管与部件的安装
Ⅰ熟悉图纸
通风管道与部件加工制作之前首先熟悉施工图纸和有关技术文件,了解与通风空调系统在同一房间内的其它管道、生产工艺设备等的安装位置、标高以及有关土建图纸,如有图纸变更,结合变更图纸,绘制出风管加工制作图。
Ⅱ现场复测
按图施工,是施工人员必需遵守的准则。但是对于通风管道来说,由于其体积大,按图纸加工好后,有时到现场就位时安装不上,这是因为:施工图纸对系统各个部件的尺寸标注不可能全部完备;土建旗工误差造成建筑物的墙柱尺寸和间距、门窗位置和尺寸、预留孔洞的位置和大小,设备基础的位置和尺寸、层间高度等与设计图纸有出入;建筑结构尺寸的中途修改、变更。基于以上原因,必须在通风系统安装现场进行尺寸复测,以减少安装中的矛盾,并将复测的结果绘成草图,作为加工风管的依据。现场复测内容包括:
a准备复测工具预备复测所需的钢卷尺、角尺、线锤以及轻便等。
b用卷尺测量通风空调系统安装部位与柱子间的距离、隔墙之间的距离和楼层高度。
c测量柱子的尺寸、窗的高度和宽度、墙壁的厚度。
d测量风管预留孔洞的尺寸和相对位置,离墙距离和标高。
e测量通风空调设备的基础或支架的尺寸、高度以及相对位置。
f测量与通风管道连接的设备连接口的位置、标高、尺寸和连接风管的位置。
g将实测尺寸记录在加工制作图上。复测时发现通风管道或设备与其他设备相碰,不能按原图施工时,由现场设计组及时解决。
Ⅲ绘制风管加工制作图
依据施工图纸和复测所得到的尺寸,绘制出正确的加工制作图,加工制作图的内容主要包括以下几个方面:
a先根据图纸设计和实测结果确定风管的标高。
b确定干管及支管中心线离墙或柱子的距离。为了风管法兰螺栓便于操作,风管离墙要有150mm以上的距离。
c按照《通风与空调工程施工及验收规范》和"全国通风管道配件图表"的要求确定三通、四通的高度及夹角,同时确定弯头角度和弯头的曲率半径。
按照支管之间的距离和上项风管配件尺寸算出直风管的长度。
e按图纸确定风口的高度和干管的标高,扣除三通、弯头和其他配件的尺寸,标出支管的长度。
f按照施工规范和通风管道支吊架标准图集和现场情况,确定支吊架安装的数量、位置、结构形式和安装所需的加工件。
Ⅳ通风管道与部件的加工制作
a风管制作在干净、专门的预制场地内进行,风管预制车间地面敷设橡胶垫。
b风管和部件的板材选用镀锌钢板考虑。依据设计要求和规范规定,其用料规格按设计要求或见下表。
风管大边长A镀锌钢板厚度
A≤500mmδ=0.6mm
500mm<A≤1250mmδ=1.0mm
A>1250mmδ=1.2mm
c通风管道与部件的加工制作顺序为:材料检验→展开下料→咬口→拆方→合缝。
d风管加工所用板材须有出厂证和材质分析报告,板材外观要求平整,厚度均匀,无腐蚀和镀锌层剥落现象;风管制作用剪板机下料,折方机折方,咬口机咬口,压口机合缝,局部用手工操作。
e风管加工尺寸:矩形风管的制作尺寸以外长为准;圆形风管尺寸以外径为准。
f风管的板材拼接用单咬口:圆形风管的闭和缝用单咬口,弯管的横向缝用立咬口;矩形风管转角缝用联合角咬口。
g当矩形风管边长大于或等于630mm和保温风管边长大于或等于800mm,且其管段长度大于1200mm时,均应取加固措施。
h风管的风量、风压测定孔在风管安装之前设于设计要求的部位;
i法兰制作先核对几何尺寸,找好平整度,对于相同尺寸的法兰,统一制作,统一钻孔,保证法兰具有互换性。
矩形风管法兰用料规格
风管长边尺寸(mm)法兰用料规格(角钢)
≥63025×3
670~125030×4
1320~250040×3
矩形法兰的制作:矩形法兰由四块角钢拼成,画线下料时,注意使焊接后法兰的内边不能小于风管的外边尺寸,达到允许的偏差值。角钢切断用切割机,切割后磨掉角钢两端毛刺,在平台上进行法兰的焊接。法尘焊接时先进行点焊,点焊后进行测量和变形调整,使法兰的两条对角线相等。然后再进行法兰的满焊。矩形法兰钻孔时先按规定的螺栓、铆钉数量画线分孔,用样冲定点后,将两个相配的法兰用夹子夹在一起,在台钻上钻出螺栓孔、铆钉孔。
②圆形法兰的制作圆形风管的法兰用机构煨制作成型,煨好的法兰,待冷却后,稍加找圆平整,就可以焊接和钻孔。圆形风管的钻孔方法同矩形法兰。
J风管支吊架的制作
不保温风管的吊架制作用型钢规格如下:
风管长+宽镀锌型钢规格
≤2400mm<40×4
>2400mm6.3#
注:吊架吊杆用Φ10的圆钢。
保温风管的吊架制作用角钢规格如下:
风管长+宽镀锌型钢规格
≤800mm<40×4
>800mm6.3#
注:吊架吊杆用Φ10的圆钢。
k风管、部件和设备的支吊托架、基础的钢制构件,在除锈后涂防锈底漆两道,外露部分涂面两道。
V风管与部件制作质量检查
a风管与配件制作完毕之后应依据施工规范和设计要求规定进行用料和制作误差检查。首先检查风管制作所用材质、规格是否符合规范和设计要求;其次检查风管的咬口是否平整、严密;第三检查其制作误差是否符合规范规定,其制作尺寸允许偏差及检查方法见下表:
风管与配件外径(外边长)制作尺寸允许偏差检查方法
≤300mm-1~0mm尺量检查
>300mm-2~0mm尺量检查
b检查中发现不符合设计要求和规范规定的风管或法兰应重新进行整改,直至达到符合规定。然后将检查合格的风管与配件和法兰进行组配。
VI风管的组配
风管与法兰的翻边铆接:铆接矩形风管法兰时,在平钢板上进行,先把两端法兰连接在风管上,并使管端露出法兰10mm,然后将法兰和风管铆接在一起,铆好后,再用小锤将管端翻边,使风管翻边平整并紧贴法兰,且保证翻边宽度不小于7mm。将铆接好法兰的风管按规范要求铆好加固框,编上标号,同时按设计要求安装风量、风压及温度测定孔,避免因安装后高空作业打孔,使风管变形不易修整。
(4)通风管道与部件的安装
I风管安装前,先检查风管穿越楼板,墙孔的尺寸,标高和标定支吊架的位置等是否符合要求。
II吊架之间的间距为3m,对于不足3m长的管道在其两端各设一吊架。保温风管为防止冷桥产生在风管和吊架之间加设垫木,垫木的厚度同保温层。
III风管安装前,必须经过预组装并检查合格后,方可按编写的顺序进行安装就位。
IV法兰填料依据设计规定,如设计无规定时用δ=5mm闭孔乳胶海绵橡胶板,为保证法兰连接的严密性,闭孔乳胶海绵橡胶板接头用闭孔乳胶海绵橡胶板的在法兰角处的连接形式梯形或楔形连接(见下图)。法兰连接时,连接法兰的螺母设在同一侧。
Ⅴ风管及部件安装前将管内外的积尘及污物清除,用聚乙烯薄膜封好两端,保持管内清洁,经清洗干净包装密封的风管及其部件,安装前不得拆卸。
Ⅵ风管的支吊架要避开风口、风阀、法兰、检查门等部件位置,配件的可卸接口不允许安装在墙洞或楼板内,支吊架与风管之间设垫木。
Ⅶ消声器安装的方向保证正确,且不得损坏和受潮。消声器单独设支架,避免其重量由风管承受。
Ⅷ防火阀安装前,检查其型号和位置是否符合设计要求、有无产品合格证,防火阀易熔片要迎气流方向安装,为防止易熔片脱落,易熔片在系统安装后再装,安装后做动作试验,另外防火阀安装时单独设支架。
Ⅸ依据设计要求的位置安装排烟阀、排烟口及手控装置(包括预埋导管),排烟阀安装后做动作试验,检查其手动、电动操作是否灵敏、可靠,阀体关闭是否严密。
Ⅹ进排风机,空调机的风管进出口与风管的连接处用帆布软接,软接的长度不得大于150mm,且软接的接缝处要保持严密和牢固,且禁止软接变径。
Ⅺ风口安装时,保证风口与风管连接的严密、牢固;风口的边框与建筑装饰面贴实;安装完毕的风口外表面保证其平整不变形,调节灵活。依据国家规范,风口的安装允许偏差项目见
下表:
允许偏差项目
项目允许偏差(mm)检验方法
风口水平度5拉线、液体连接器和尺量检查
垂直度2吊线和尺量检查
Ⅻ安装过程中振动和噪音的预防振动和噪音的预防是安装过程中一个重点,安装过程中风管的振动和噪音的预防主要从以下几个方面着手:空调风管相连接的软接头的安装做到松紧适度,避免因软接过松减小进出风口面积,而引起噪声和振动。
为防止风管振动,在每个系统风管的转弯处、与空调设备和风口的连接处设固定支架。
(5)通风空调设备安装见设备安装方案
(6)风管的漏风量测试
风管安装完毕,且在风管保温之前,首先进行风管的检漏。国家规定的风管的漏风检测分为漏光法检测和漏风量测试两种方法。依据规范规定,风管的漏风量检测用漏光法定性检测和漏风量测试定量检测相结合的方式,对一般性空调来说漏光法适合于中、低空调系统的严密性检验;漏风量测试适合于中压系统的抽检和高压系统的悉数检测。
风管安装完毕以后,在保温之前按以下步骤对安装完毕的风管进行的漏风量的测试。
①试验前的准备工作:将待测风管连接风口的支管取下,交将开口处用盲板密封。试验方法:利用试验风机向风管内鼓风,使风管内静压上升到700pa后停止送风,如发现压力下降,则利用风机继续向管内进风并保持在700pa此时风管内进风量即等于漏风量。该风量用在风机与风管之间设置的孔板与压差计来测量。
③试验装置
试验风机:为变风量离心风机,风机最大风量为1600m3/h,最大风压2400pa连接管:Φ100mm
孔板:当漏风量≥130m3/h时,孔板常数C=0.6,孔径=0.0707m
当漏风量<130m3/h时,孔板常数C=0.603,孔径=0.0306m
倾斜式微压计:测孔板压差0~2000pa
测孔管压差0~2000pa
④试验步骤
漏风声音试验:本试验在漏风量测量之前进行。试验时先将支管取下,用盲板和胶带密封开口处,将试验装置的软管连接到被测风管上。关闭进风挡板,启动风机。逐步打开进风挡板直到风管内静压值上升并保持在700pa为止。注意听风管所有接缝和孔洞处的漏风声音,将每个漏风点作出记号并进行修补。
漏风量测试:本试验在有漏风声音点密封之后进行。测试时,首先启动风机,然后逐步打开进风挡板,直到风管内静压值上升并保持在700pa时,读取孔板两侧的压差,按下述公式度算被测风管的漏风量:
漏风量按下式进行计算
式中:V-风速,(m/s)
Q-漏风量,(m3/h)
A-孔板面积(m2)
C-孔板常数
△P-空气通过孔板的压差(pa)
ρ-空气密度(kg/m3)
⑤结论
为确保工程质量,对于本工程我公司在风管预制完毕、安装之前用漏光法对风管的严密性进行定性检测,风管安装完毕以后全部用漏风量测试对风管的严密性进行定量检查。
(7)风管的保温
风管的保温用δ40mm的离心玻璃棉板。
Ⅰ保温的材质、规格及防火性能必须符合设计和防火要求,保温材料使用前要查验材料合格证或做燃烧实验。
Ⅱ保温材料下料要准确,切割面要平齐,在截料时要使水平、垂直面搭接处以短面两头放在大面上。
Ⅲ清洁风管表面:风管保温之前除去风管表面残留的油污及积尘。
Ⅳ粘保温钉:橡塑板用金属保温钉予以固定,将保温钉粘贴在风管表面,风管底面保温钉之间的间距不大于25cm,风管侧面和顶面的保温钉数目依据规范适当减少。
Ⅴ敷设橡塑保温板:敷设保温板时,保温板的接缝尽量避免出现在风管底部,敷设完毕后,用固定压片将保温板适度、均匀压紧。保温板敷设完毕后用宽底大于50mm的铝箔胶带将橡塑板的接缝封严。保温材料铺覆应是纵横缝错开,小块保温材料应尽量铺覆在水平面上。
Ⅵ保温层平整度,保温厚度的允许偏差和检验方法见表
项次项目允许偏差(mm)检验方法
1保温层表面平整度5用1米直尺和楔形塞尺检查
2隔热层厚度+0.10δ
-0.05δ用钢针刺入隔热层和尺量检查
(8)通风空调系统试运转及试验调整
通风空调系统安装完毕后,系统投入使用前进行系统的测定和调整。通风空调系统测定和调整方法见调试方案。
4、通风、空调系统试运转及试验调整
(1)调试内容
通风空调系统测定和调整的目的,是检验设计、施工和设备性能是否合乎生产工艺要求的必要球节,通过测度与调整,使空调机、风机的风量符合设计要求,使室内风量、温湿度、噪音、气流速度等满足设计要求,以及使空调系统运行达到节能的目的。
(2)调试前的准备工作
Ⅰ调试所用仪器、仪表的准备和调试人员的配备:空调系统调试之前首先准备调试所用仪器、仪表,安排调试人员以及调试工。调试所用仪器、仪表见后附"所
用仪器、设备一览表"。
Ⅱ现场的准备工作
①空调系统全部阀门打开,并清理空调机组内杂物。
②检查机组风机接线是否正确。
③检查总风管及分支管预留测试孔位置是否正确,如果预留位置不合格或没有预留,则需在测试前选择、安装好测孔。
④检查各风机皮带松紧程度,过紧会增加磨擦力,皮带易损坏,电机负荷过大,过松会使皮带在轮上打滑,造成风量变小。
(3)调试内容
通过空调系统的无生产负荷联动试运转的测定和调试包括以下内容:
Ⅰ通风与空调设备的风量、风压转速的测定
Ⅱ系统与风口风量测定与调整;
Ⅲ空调系统室内参数的测定;
Ⅳ防排烟系统正压送风前室静压的测定。
(4)调试方法与步骤
通风与空调设备的风量、风压转速的测定;风管内风压、风量用毕托管及倾斜式微压计测定,以下图为例:
①定断面选择:测定断面原则须选在气流均匀且稳定的直管段上,即按气流方向大局部阻力之后大于或等于4倍管径,在局部阻力之前大于或等于1.5倍管径(矩形风管大边尺寸)的直管段上,对于上述系统来说,由于现场条件受到限制,距离适当缩短,LS、LH可通过测量孔测量风压、风量,LX也可在风量出口处及入口处测得。
确定断面内的测点:首先将测定断面划分为若干个接近正方形面积相等的小断面,其面积不大于0.05mm2,测点位于各个断面的中心,以LP断面为例。
③在LP断面1250×800上至少测量20个点,各点分布在各个小断面积中心,如果气流不均匀,可通过增加测点数。各点动压测得后,则可计算出平均动压:Pdp=(Pd+Pd2+----+Pdn)/n(Pa)其中Pd1、Pd2-----------Pdn-各测点动压
平均风速:Vp=2√gPdn/ρm/s
ρ:空气密度
④于LS、LH,送回风量可由公式:L=3600FVPm3/h计算。
其中F:测点处的断面积(m2)VP:平均风速(m/s)
对于LX可在风量出口和入口测得。用热球风速仪、探头贴近格栅或网络,并垂直于风速,定点测量法,测得风速。
LX的风量:L=KFVP×3600m3/h
其中F:测点断面积(m2)VP-平均风速(m/s)K1-断面面积修正系数
⑤机转速用转速表直接测量风机至轴转速,重复测量三次取平均值。
(5)风口风量的测定
用热电风速仪,将探头贴近风口并垂直于风速,用定点测量法可测得风速,如果与设计风速有出入,可调节风口阀门的开度来控制风量,直到测量值符合设计值为止,并且与设计风量的偏差不大于10%。
风口风量:L=3600F外框×VP×K(m3/h)
其中K:风口面积修正系数F外框:风口外框面积(m2)
VP:风口平均风速(m/s)
更多关于工程/服务/购类的标书代写制作,提升中标率,您可以点击底部客服免费咨询:s://bid.lcyff/#/?source=bdzd
急急求助:五星酒店客房节能降耗的方法
循环泵选型要根据杨程和流量选取,流量可以计算系统总流量并乘1.2的系数。
中央空调常见的闭式系统循环水泵杨程的计算:
∑△h=Hf+Hd+Hm。
Hf、Hd——水系统沿程阻力和局部阻力损失Pa。
Hm——设备阻力损失Pa。∑△h----杨程。
1.冷水机组阻力:由机组制造厂提供,一般为60~100kPa。
2.管路阻力:包括磨擦阻力、局部阻力,其中单位长度的磨擦阻力即比摩组取决于技术经济比较。若取值大则管径小,初投资省,但水泵运行能耗大;若取值小则反之。目前设计中冷水管路的比摩组宜控制在150~200Pa/m范围内,管径较大时,取值可小些。
3.空调未端装置阻力:末端装置的类型有风机盘管机组,组合式空调器等。它们的阻力是根据设计提出的空气进、出空调盘管的参数、冷量、水温差等由制造厂经过盘管配置计算后提供的,许多额定工况值在产品样本上能查到。此项阻力一般在20~50kPa范围内。
4.调节阀的阻力:空调房间总是要求控制室温的,通过在空调末端装置的水路上设置电动二通调节阀是实现室温控制的一种手段。二通阀的规格由阀门全开时的流通能力与允许压力降来选择的。如果此允许压力降取值大,则阀门的控制性能好;若取值小,则控制性能差。阀门全开时的压力降占该支路总压力降的百分数被称为阀权度。水系统设计时要求阀权度S>0.3,于是,二通调节阀的允许压力降一般不小于40kPa。
什么是暖基础?
酒店综合节能技术介绍及案例分析
随着我国国民经济持续快速发展,带动了能源消费长期高速增长。目前我国能源供给已呈现出紧张局面。大力推进节约降耗,缓解瓶颈制约,实现能源环境和经济社会的可持续发展是我国用能工作的核心。
能源是保障酒店各种机电设备运行的基础动力。随着我国现代酒店的快速发展,虽然酒店的能源管理水平已得到了很大的提高,酒店的能源消耗量呈逐年下降的趋势,但与发达国家比较,我国酒店业在能源利用效率方面还存在较大差距。针对酒店机电设备的特点,就目前常用的、实践证明比较成熟的节能技术做一简介。对于具体的节能项目进行基础理论分析,求得基础理论的技术支持。以实物工程案例进行分析,对节能方法及其实际应用中的注意要点进行总结。旨在供大家在开展节能工作时参考。
一、酒店用能基本状况
目前我国酒店业能源消耗费用平均约占酒店收入的13%左右。
酒店用能一般比例平均约为:
空调51%
照明21%
机电17%
其他10%
从酒店用能一般比例来看,空调用能占酒店用能的一半以上,节能潜力最大。下面先从冷冻基础理论入手。分析空调节能的途径,论证相应的节能方法及实践。
二、酒店空调节能技术及方法
(一)冷冻基础理论简述
1、实际冷冻循环分析:
冷冻循环过程文字表述:
由蒸发器(4)出来的状态为1(T1,P1)的气体冷媒;经压缩机绝热压缩以后,变成状态2(T2,P2)。被压缩后的气体冷媒,在冷凝器(2)中,等压冷却冷凝,经状态3(T3,P2)而变化成状态4(T3,P2)的液态冷媒,再经节流阀(3)膨胀到低压(P1),变成状态5(T1,P1)的气液混合物。其中低温(T1)低压(P1)下的液态冷媒,在蒸发器(4)中吸收被冷物质的热量,在P1下气化,变成状态1(T1,P1)的气态冷媒。气态冷媒经管道重新进入压缩机,开始新的循环。这就是冷冻循环的四个过程。
2、冷冻理论分析空调节能途径(一)
(1)冷冻系数∑=Q1∕-W=Q1∕(-Q2)-Q1
式中 Q1--冷媒从环境(冷物体T1)吸收的热量,为正值;
Q2--冷媒向环境(热物体T2)放出的热量,为负值。
W--压缩机对物系(冷媒)所作的功,为负值。
文字表述: ∑表明外加1个单位的功,冷冻剂从冷物体所能够
吸取能量。它是衡量冷冻循环效率的一个重要指标。
3、冷冻理论分析空调节能途径(二)
(2)理想冷冻循环(可逆循环)
数字表达式: ∑可=Q1∕(-Q2)-Q1=T1 ∕T2-T1
●式中:T1—冷物体的绝对温度(蒸发温度)
T2—热物体的绝对温度(冷凝温度)
● 文字表述:对理想冷冻循环来说,因为每一部都是可逆的,故理想冷冻循环的效率可为最大。而且与T1、T2有关,而与冷冻剂无关。
●分析:当蒸发温度T1升高时,冷冻系数升高;T1降低时,则反之。
当冷凝温度T2降低时,冷冻系数升高;T2升高时,则反之。
4、冷冻理论分析空调节能途径(三)
(1)在T--S 图上求算冷冻能力
由冷冻循环的T-S图分析可得:
● 标准冷冻工况为(1-2-3-4-5-1)其制冷量积分面积Q1;
● 当冷凝温度降低至T2’时,其冷冻工况为(1-2-3-4’-5’-1),其制冷量积分面积为Q1+Q1’;
● 当蒸发温度升高至T1’时,其冷冻工况为(1-2-3-4-5’’-1),其制冷量积分面积为Q1+Q1’’。
(2)改变操作工况分析冷冻量的变化案例分析
(a)冷冻机以氨为冷媒。标准运行工况:
蒸发温度T1=-15℃
冷凝温度T2=30℃
过冷温度T2’=25℃
△制冷量100000KCal∕h
(b)改变运行工况后:
蒸发温度T1=-10℃
冷凝温度T2=25 ℃
过冷温度T2’=20℃
△制冷量135000KCal∕h
(5)冷冻理论分析空调节能途径(四)
☆ 冷冻理论与实践证明
在蒸发温度一定条件下:
冷凝温度T2升高1℃,空调冷水机组效率降低约4.2%左右。
冷凝温度T2降低1℃,空调冷水机组效率升高约4.0%左右。
在冷凝温度一定条件下:
蒸发温度T1降低1℃,空调冷水机组效率降低约4.2%左右。
蒸发温度T1升高1℃,空调冷水机组效率升高约4.0%左右。
(6)冷冻理论分析空调节能途径(五)
☆ 冷冻理论支持节能的途径方向
A、冷凝温度越低,冷冻系数越大,可减少压缩机的电耗。
B、蒸发温度越高,冷冻系数越大,可减少压缩机电耗。
C、蒸发过程中所吸收被冷物体的热量和压缩机做功产生的热量是可以回收利用的。
根据冷冻理论支持的空调节能的途径,就可有的放矢的设计相应的节能设备和自动化控制系统以及工艺管路等等,以达到节能改造的最佳化。
(二)酒店综合节能改造基本条件和要求
1)因地制宜,合理的用符合本酒店店情的节能技术和方法。
2)熟悉系统及设备的运行工况。
3)节能经济效益明显。
4)不影响设施系统及设备的正常运行,不影响对客服务的质量。
5)节能设施要求具备操作简单,容易控制,无安全隐患。
6)基本不影响周边环境。
7)经过调查研究,科学论证工作后决策节能改造项目。
(三)酒店空调节能技术和方法及其应用介绍
1、中央空调余热回收技术及其应用
充分利用热交换原理,将空调的余热(冷凝热)进行回收,生产50~60℃热水,供酒店客房、、员工浴室等使用。由于回收的空调是冷凝热余热。所以生产热水量是零能耗。同时,由于部分余热回收利用,从而降低了冷凝温度。又使中央空调机组效率提高5~10%。由于技改后主机负荷减少,不仅节省主机的耗电量,同时也减少主机的故障率,延长了主机的使用寿命,是一举多得的优秀节能技术。
(1)中央空调余热回收技术原理流程示意图
(2)深圳东华日酒店空调余热回收流程示意图(案例分析)
空调余热回收系统特点:
●实现了两台主机互为备用一组余热回收器系统的管路工艺流程,从而进一步提高了余热回收率。
●余热回收热水系统与原热水系统互联,确保供热水可靠性。
(3)中央空调余热回收技术应用范围
广泛应用于活塞式,螺杆式冷水机组。
热水箱容积推荐按总用水量的30%左右设置。
设有完善的热水锅炉备用系统。
设有恒定热水出水温度的自动调节系统。
(4)关键设备余热回收器面积计算
传热方程式:Q=KF△tm
物理意义:在某一个传热状态下,每单位面积,每度温升所传的热量。
式中:K-传热系数Kcal/m2.h. ℃
F-传热面积m2
△tm-对数平均温度差℃
传热系数K:描述了某一传热过程的状态,即传热能力的大小,K值的来源有三个方面:选用生产实践数据;实验测定;理论计算。
在此推荐:计算空调余热回收面积的传热系数K值为580~720Kcal/m2.h.℃
2、中央空调循环水系统变频节能技术
(1)中央空调循环水系统变频节能技术
空调运行冷负荷分析:
目前酒店大多数中央空调循环水系统的冷冻泵和冷却泵转速都是不可调节的,只要空调一运行,无论负荷情况如何、季节如何,冷冻泵和冷却泵都是以额定转速运行,所以能源浪费现象严重。
(2)节能改造的技术可行性
用交流变频器控制水泵运行,是目前中央空调系统节能的有效途径之一。图一和图二给出了阀门调节和变频调速器控制两种运行状态的压力-流量(H--Q)关系及功率-流量(P--Q)关系。
图一中曲线(1)是水泵图一中曲线1是水泵在额定转速下的H-Q曲线,曲线2是水泵在某一较低速度下的H-Q曲线,曲线3是阀门开启最大时的管路H-Q曲线,曲线4是某一较小阀门开度下的管路H-Q曲线。定转速运转的条件下调节阀门开度,则工况点延曲线1由A移到B;在阀门开度最大的条件下用变频器调节水泵转速,则工况点沿曲线3由A移到C。显然,B点与C点的流量相同,但B点的压力比C点的压力要高很多,即是说,变频控制水泵调速运转下,节能效果显著。
图二中曲线5为变频器控制水泵调速运转方式下的P-Q曲线,曲线6为阀门调节方式下的P-Q曲线可以看出,在相同的流量下,变频控方式比阀门调节方式能耗小,二者之间可由下式表示:
△P=0.4+0.6Q/Qc-(Q/Qc)3Pc
其中,Q为实际负荷流量,Qc为额定流量,Pc为额定负载功率,△P为功率节省值。不难算出负载流量下降到其额定流量的70%时,节电率将达到48%。
(3)除了节省电能外,变频器的应用还会给冷水机组运行带来如下优点:
1)调节水流量,把冷水机组进水和回水温度控制在适当的范围内,保证主机的热交换率,节省主机能耗。
2)管路阀门开启最大,消除阀门上节流局部损失而节省电能。
3)实现电机软启动(最大启动电流小于额定电流),并有欠压、过流、缺相、漏电等保护措施,改善了电机运行条件,提高了运行的可靠性。
4)启动平稳,无冲击负荷,大幅度降低设备损耗, 延长了设备使用寿命,减少了维修费用。
(4)中央空调循环水系统变频节能控制
(5)中央空调循环水系统变频节能技术实际应用的基本条件:
1)广泛应用于冷冻水泵、冷却水泵、冷却塔。较大型冷风柜(空气处理机)以及其他可变负荷的场所。一般节能空间20~50%左右。
2)用变频闭环控制电机,按需要设定温度,使设备系统储备的热容量和随时间季节变化的热负荷通过转速自动调节,在满足热负荷正常使用的条件下,达到最大限度的节能。
3)需对循环水系统做全面的水力计算
求出管道总阻力
△ P = ∑hf=ho+hc+hj
n
=ho+(λ·L/d+∑C)w2/2g [mH2O]
i=1
●式中:ho――流体静压头[mH2O]
hc――管路的阻力压头[mH2O]
hj――流体的动压头[mH2O]
计算该系统的水泵扬程的富裕量是多少?从而确认节能空间。
4)选择合适位置,设置最小压力差保护,加强管路降阻管理。
(5)中央空调循环水系统变频节能改造案例分析
1) 深圳丹枫白露酒店案例分析
循环系统动力回路控制功能:
1、三台泵可以在变频调节下自动节能运行。
2、变频器直接控制两台泵,间接控制一台泵。
3、变频部分故障后可以工频AC380V∕50Hz条件下运行。
4、闭环集冷冻泵、冷却泵水冷却塔参数至智能控制子站处理,并发出指令调节水泵电机转速。
该节能系统投入运行以来,节电效果明显,年平均节电率38%以上。
在上期酒店综合节能技术介绍及案例分析之一中,用冷冻理论分析了空调节能的途径,并指出了空调节能途径及方向;介绍了酒店空调节能技术和方法及其应用:中央空调余热回收的技术及应用;中央空调水循环系统变频节能技术。本章继续介绍有关空调节能技术和方法及应用:
一、VRV变频直冷式空调节能技术及其应用案例
目前酒店客房大多数空调为经典的水循环载冷系统中央空调。该空调系统成熟可靠,历史悠久,广泛被各种场合利用。随着人们对节能意识进一步增强,研制了许多节能环保、实用型新一代空调系统,VRV变频直冷式空调就是比较典型的节能产品之一。下面就水循环载冷系统空调和新型VRV变频直冷式空调进行理论上的分析和比较。
1、水循环载冷空调系统示意图:
制冷工艺流程示意图
2、VRV变频直冷式空调系统示意图
制冷工艺流程示意图
3、水循环载冷空调系统与VRV变频直冷式空调系统比较
根据以上两个制冷工艺流程图分析,不难看出,水循环载冷空调系统设有冷冻水循环系统、冷却水循环系统。主要设备有冷冻水泵、冷却水泵、冷却塔、动力配电柜以及水循环水管路、阀门管件等,系统复杂且占用酒店室内较大的空间和消耗大量;VRV变频直冷式空调系统无水循环载冷系统,冷媒直接在风机盘管蒸发吸热进行制冷。冷凝热用风冷却。系统简单,热交换效率高,直接制冷换热较间接制冷换热的热交换效率高出8%~15%左右。换言之,制冷效率提高8%~15%左右。
4、999丹枫白露酒店客房用VRV变频直冷式空调案例分析:
(1)客房总制冷负荷约2330kW/h
(2)用VRV变频直冷式空调运行能耗费用
分析条件:暂不考虑空调压缩机耗电量。只考虑冷凝风机的能耗和运行维修费用。
经过运行后的实践数据如下:
冷凝风机年耗电量约360000 KWH(0.9元/ KWH)
维修费用约25000元/年
运行总费用349000元/年
(3)用水循环载冷中央空调系统能耗及费用。
分析条件:暂不考虑空调压缩机耗电量,只考虑水循环设备能耗和运行维修费用。
根据客房总冷负荷进行设计选型及运行费用计算数据如下:
水循环设备年耗电量约878000 KWH (0.9元/ KWH)
耗水量4600M3/年(4.5元/M3)
水处理费用20000元/年
维修费用25000元/年
运行总费用855900元/年
(4)方案节能比较
暂考虑两方案空调压缩电功率相等(直接制冷换热比间接制冷换热的热效率高8%~15%,本比较暂忽略不计)。
年节电量:518000KWH
年节约费用:506900元
(5)投资回收年限
选用VRV直冷式空调系统设备及安装费用较选用经典水循环载冷中央空调系统设备及安装费用多投资1900000元。
回收年限约3.7年。
(6)分析结果
优点:VRV直冷式空调不但节电效果明显,而且不需水循环载冷所用水,节省了水。同时,从根本上解决了水冷却塔的噪声和水汽对环境的污染问题以及水处理带来的化学水污染问题。具有运行成本低,自控程度高等诸多优点。
缺点:VRV直冷式空调用于酒店客房需要若干组子系统(室外主机)组成,需要较大的室外安装面积。由于冷媒管接点众多,一旦发生泄露难查找和维修。目前冷媒管道长度限制在90~120m之内。
二、气源热泵三联供技术及其应用
目前常见的关于各类热泵的产品说明书或技术介绍中,均讲的比较神秘。把一个本来简单的问题讲的很复杂,可能出于越神秘越复杂,其科技含量就越多的缘故吧。下面对于各类热泵来一个通俗的介绍。
通常把地源热泵、水源热泵、气源热泵统称为有源热泵。无论哪一种热泵,其工作原理都是一样的。区别在于热源的不同叫法而已。
地源热泵技术是利用地下浅层地热(包括土壤、地下水、地表水),以地热源作为热泵夏季制冷的冷却热源,冬季暖供热的低温热源;同理水源热泵则以建筑附近的江、河、湖、海、水库等为热源;目前实用技术两者均实现了建筑物空调,暖和生活用水的三联供;而气源热泵是从空气中吸收热量做为热源的,实用技术实现了向建筑物提供暖和生活用水二联供。无论哪种热泵均为通过输入少量的电能,获得较大的热能,一般可达1:3.5以上。
综上所述地源热泵和水源热泵优点很突出,但受建筑物的客观条件和建筑物所在的地质条件、自然环境所限制,往往许多地方不适合应用。特别象深圳这样的高密度建筑物群中,较难以实施。因此必须因地制宜,用一种适合我国南方(亚热带气候)而不受城市建筑物和地质条件的影响的产品,新型气源热泵在原气源热泵的基础上增设一套蒸发器。仍然可做到:空调制冷,暖制热和生活热水的三联供给。
1、气源热泵三联供技术。
主要利用我国南方(深圳、海南、粤南地区)全年平均温度20℃以上。冬季平均气候9~16℃,极温不低于3℃。优越的气候条件给气源热泵开辟了良好前景。
2、气源热泵三联供技术工艺流程示意图
由工艺流程示意图可知,春夏秋空调季节,热泵热源来自于空调负荷,冬季非空调季节,热源来自室外空气,由压缩机做功将吸热蒸发后的气态吸热冷媒压缩成高温高压气态冷媒,在冷凝器中放热加热生活用热水(或暖用热水)。气态冷媒被冷却、冷凝为液态冷媒,经过节流膨胀至蒸发器蒸发吸热,从而完成一个热循环。
3、设备的特点:
设有二套蒸发器系统,一套(即制冷终端设备)为春、夏、秋空调季节使用,一套为冬季非空调季节使用,即从操作上分为两个工况。
4、气源热泵技术指标
气源能温度平均9~26℃
制冷温度:7~9℃
制热温度:55℃(热水)
冷媒介质:134a
制冷、制热效率:>3.2~3.5
5、技术特点
气源热泵技术,特别适用我国南方冬季极限温度≥3℃以上的地区,全年节约能源费用约40%以上。
以空气作为热泵热源,可谓取之不竭,用之不尽,热源费用等于零,不需打井,埋管,一次投资费低,不受地质状况和建筑物的影响。
维护保养方便,运行费较地源水源热泵低。
我国现生产的气源热泵规格比较小,暂无大型化设备。做为大型酒店暖之用,还有待于开发。目前气源热泵主要用于生产生活用热水的同时,副产空调制冷而广泛用。
6、气源热泵在酒店的应用
推荐空调主机+气源热泵配制,热泵选型可考虑按酒店生活热水的总用量进行选择。
有些酒店冬季(非空调季节),仍用气源热泵制冷,作为酒店空气除湿之用,也取得了良好的效果。
三、用CO2浓度控制新风量新技术介绍
酒店宴会厅、多功能厅、餐厅等公共区域空调负荷较大。当非就餐时,或不举行宴会、不举办各种庆典会议及活动时,室内空调负荷很低。但当一旦启动,往往人员大增,宾客满堂,座无虚席,有时甚至超员20%以上。因此在宴会厅、多功能厅、餐厅的空调冷负荷设计计算时,均要充分考虑满员和超员的冷负荷余量,所以设计的冷负荷均很大。
该空调方式多用全新风低风速组合式大风量空调机组供冷。常用送回风方式有两种:
a)只设送风而不设回风方式;
b)设有送、回风方式;无论哪种方式,该系统的新风百分比都很大。空调制冷量,一般新风供冷是循环供冷的一倍多。
如何根据空调的实际负荷变化而合理的调节新风量达到节能的目的,就是本技术介绍的中心内容。用CO2浓度调节新风量节能方案,如图示:
宴会厅及公共场所新风节能方案示意图
酒店宴会厅、多功能厅、餐厅等公共区域用CO2浓度调节空调新风量节能技术,主要用CO2探头,集空间的CO2浓度,通过传感器至智能分析控制器发出指令,从而控制电动微分调节风阀。以达到调节和控制新风量一直处在最佳节能运行状态。该技术适合设有送、回风空调方式的场合。节能值平均可达20~35%以上。
中央空调冷却水泵和冷冻水泵的区别
暖基础
1.基本概念:暖系统:冬季向室内供热保持室内所需温度的建筑设备叫做暖系统。暖系统由热源或供热装置、散热设备及供热管道组成。输送热量的物质或带热体叫做热媒,一般用水和蒸气做为热媒。热媒在热源获得热量通过供热管道输配到各个用户或散热设备,由散热设备把热量发散到室内。中热源是燃气壁挂炉,热媒为热水,散热设备是通过不同管道布置形式连接的散热器、地板辐射加热管或风机盘管。壁挂炉内水泵作为机械循环的强制动力。围护结构:建筑物及房间各面的围挡物,如墙体、屋顶、地板和门窗等。分内、护结构两类。壁挂炉暖系统多用于住宅,外墙、屋顶和外门窗为护结构,内墙、隔墙为内围护结构。在进行暖热负荷计算时,需要考虑护结构及相邻房间温差大于5.C的隔墙的耗热量和得热量。暖热负荷:为维持暖房间室内温度达到设计要求标准时,根据暖房间围护结构的耗热量和得热量的平衡计算结果,需要暖系统供给的热流量。2.基本计算:A.暖设计温度参数选择:a. 暖室外计算温度tW:各地区用不同计算温度,参见规范规定。b.暖室内计算温度tn: 卧室18 .C或20 .C;卫生间(带浴室)25 .C;厨房14 .C或16.C。c. 暖系统供回水温度:对于壁挂炉暖系统,根据散热设备不同,取不同供回水温度。散热器系统:供水温度(tg)85 .C或80 .C ,回水温度(th)65 .C或 60 .C 地板辐射系统:供水温度(tg)≤60 .C,供回水温差宜小于或等于10.C。风机盘管系统:供水温度(tg)65 .C 或60 .C, 回水温度(th)55.C或 50 .CB.常用工程单位换算(见热工基础知识部分)根据不同地区暖室外计算温度tW及不同功能房间的暖室内计算温度tn,暖热负荷可以由暖面积平均热指标及暖面积进行估算。同时要考虑暖房间护结构的朝向及墙体的节能保温情况及相邻房间的暖情况。当暖室外计算温度低,房间暖室内计算温度高,相邻房间不暖,外墙朝向为北向且保温性能差时,需取较大的暖面积平均热指标。根据《民用建筑节能管理规定》,新建居住建筑护结构已考虑节能保温措施,不同地区暖面积平均热指标须根据当地气象条件确定。对于北方地区主导风向为西北,南向及外墙少的房间热指标较小,东向房间稍多,西北向及外墙多的房间最大。简化计算公式:暖热负荷Q(W)=暖面积(m2 ) x面积热指标(W/ m2)。C.暖系统水流量计算:G=0.86Q/△t G—流量 kg/hQ—热负荷 w△t—供回水温差 tg-th .CD.暖系统阻力计算:水系统中阻力损失包含局部阻力损失及沿程阻力损失两部分,简化公式为: △P=(1+a)△Pm∑l△P— 管段总阻力损失 Pa ; △Pm— 沿程阻力损失 Pa/m ;∑l — 最不利环路长度 m ; a — 局部阻力占沿程阻力的百分数机械循环热水系统中,室内暖管道沿程阻力损失取80~120 Pa/m,局部阻力百分数取0.5~1,散热器系统与风机盘管系相比较局部阻力百分数取值较小,具体数值视系统复杂情况而定。低温热水地板辐射暖系统的阻力应计算确定
1、适用地方不同
冷冻水泵和冷却水泵都属于水循环系统。
冷冻水泵适用于中央空调等大型制冷设备中。
冷却水泵适用于高压运行系统中输送清水或物理化学性质的液体,如高层建筑给水、锅炉给水、暖通制冷循环、浴室等冷暖水循环增压及设备配套,消防系统等输送或管道增压之用。
2、组成结构不同
冷冻水系统主要由制冷机组的蒸发器换热管、冷冻水循环泵、分水器、集水器、膨胀水箱、补水泵、水处理装置以及相应的阀门、管路等构成的闭式系统。
冷冻水泵通常用由入水室、叶轮和出水室组成的单级离心泵。
3、作用不同
冷冻水循环系统是中央空调设备的冷冻水吸收制冷剂蒸发的冷量,使其温度降低成为冷水,进入分水器后再送入空调设备的表冷器或冷却盘管内,与被处理的空气进行热交换后,再回到冷水机组内进行循环再处理。
冷却水泵是冷却系统的心脏,其作用是提高循环系统中冷却液的工作压力,维持相关部件间的冷却液循环,防止运行温度过高。
4、水温不同
冷冻水泵中的冷冻水设计温度为5~7℃,而事实上在全年决大部分时间冷冻水的温度仅为2~4℃。
冷却水泵具有工作水温高在75~85℃之间。
百度百科——冷却水泵
百度百科——冷冻水系统
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。