天加风机盘管型号及参数表出风口尺寸_天加风机盘管型号及参数表
1.关于中央空调的高手进
2.风机盘管安装规范简析
3.风机盘管是根据什么来选型的?
4.中央空调螺杆式冷水机组加新风机组、风机盘管系统具体指什么?
5.风机盘管安装时应该注意哪些事项?
水源是应用水源热泵的前提。文中阐述了影响水源热泵运行工效的水源系统的水量、水温、水质和供水稳定性等因素。介绍了各类水源、取水构筑物、水处理技术、回灌技术,指出了水源方案设计和施工中应注意的一些问题。
清华同方人工环境设备公司今年向市场投放了节能、环保型新产品—GHP型水源中央空调系统。国内其它厂家也有类似产品面市,如节能冷暖机、地温冷暖机,地温空调,地温热泵等。名称虽然各异,但基本同属热泵类产品。热泵能有效利用空气、水体和土壤中蕴藏的低温位热能。水源热泵系统是21世纪能源利用的最优方式之一。适合、可靠的水源是有效应用水源热泵的前提,推广利用水源热泵技术时,应注意解决好相关的水源问题。
1、水源热泵工作原理及其系统构成
热泵这一术语是借鉴水泵一词得来。在自然环境中,水往低处流动,热向低温位传递。水泵将水从低处泵送到高处利用。而热泵可将低温位热能泵送(交换传递)到高温位提供利用。在我国《暖通空调术语标准(GB50155-92)》中,对热泵的解释是能实现蒸发器和冷凝器功能转换的制冷机; 在《新国际制冷词典(New International Dictionary of Refrigeration)》中,对热泵的解释是以冷凝器放出的热量来供热的制冷系统。可见,热泵在本质上是与制冷机相同的,只是运行工况不同。其工作原理是,由电能驱动压缩机,使工质(如R22)循环运动反复发生物理相变过程,分别在蒸发器中气化吸热、在冷凝器中液化放热,使热量不断得到交换传递,并通过阀门切换使机组实现制热(或制冷)功能。在此过程中,热泵的压缩机需要一定量的高位电能驱动,其蒸发器吸收的是低位热能,但热泵输出的热量是可利用的高位热能,在数量上是其所消耗的高位热能和所吸收低位热能的总和。热泵输出功率与输入功率之比称为热泵性能系数,即COP值(Coefficient of Performance )。热泵有多种,以水作为热源和供热介质的热泵称为水源热泵。水源热泵性能系数(即COP值)高于空气源热泵,系统运行性能稳定。
水源热泵工程是一项系统工程,一般由水源系统、水源热泵机房系统和末端散热系统三部分组成。其中,水源系统包括水源、取水构筑物、输水管网和水处理设备等。
2、水源热泵对水源系统的要求
水源系统的水量、水温、水质和供水稳定性是影响水源热泵系统运行效果的重要因素。应用水源热泵时,对水源系统的原则要求是:水量充足,水温适度,水质适宜,供水稳定。具体说,水源的水量,应当充足够用,能满足用户制热负荷或制冷负荷的需要。如水量不足,机组的制热量和制冷量将随之减少,达不到用户要求。水源的水温应适度,适合机组运行工况要求。例如,清华同方GHP型水源中央空调系统在制热运行工况时,水源水温应为12—22℃;在制冷运行工况时,水源水温应为18—30℃。水源的水质,应适宜于系统机组、管道和阀门的材质,不至于产生严重的腐蚀损坏。水源系统供水保证率要高,供水功能具有长期可靠性,能保证水源热泵中央空调系统长期和稳定运行。
3、水源
原则上讲,凡是水量、水温能够满足用户制热负荷或制冷复荷的需要,水质对机组设备不产生腐蚀损坏的任何水源都可作为水源热泵系统利用的水源,既可以是再生水源,也可以是自然水源。
3.1 再生水源
是指人工利用后排放但经过处理的城市生活污水、工业废水、矿山废水、油田废水和热电厂冷却水等水源,有条件利用再生水源的用户,变废为利,可减少初投资,节约水。但对大多数用户来说,可供选择的是自然界中的水源。
3.2 自然界中的水源
自然界中的水分布于大气圈、地球表面和地壳岩石中,分别称之为大气水、地表水和地下水。陆地上的地表水和地下水均来自于大气降水。
地表水中的海水约占自然界水总储量的96.5%。滨海城市有条件利用海水,国外有应用海水作热泵水源的实例。我国一些沿海城市利用海水作工业冷却水源已有多年历史。近年,国内有用海水作热泵水源的研究,但海水水源热泵技术的实用化尚待时日。陆地上的地表水,即江、河、湖、水库水比海水和地下水矿化度低,但含泥沙等固体颗粒物、胶质悬浮物及藻类等有机物较多,含砂量和浑浊度较高,须经必要处理方可作热泵水源。
地下水是指埋藏和运移在地表以下含水层中的的水体。地下水分布广泛,水质比地表水好,水温随气候变化比地表水小,是水源中央空调可以利用的较为理想的水源。
3.3 水量与水源的选择
水量是影响水源热泵系统工作效果的关键因素,一项工程所需水量多少由该工程负荷与机组性能确定,所选择的水源水量应满足负荷要求。如果其他各种条件均具备,但水量略有不足,其缺口可取一定弥补措施解决。如水量缺口较大,不能满足负荷要求,就应考虑其他方案。 就某项具体工程而言,应从实际情况出发,判断是否具备可利用的水源。不同工程的场地环境和水文地质条件千差万别,可利用的水源各不相同,应因地制宜地选择适用水源。当有不同水源可供选择时,应通过技术经济分析比较,择优确定。
4、水质
自然界中的水处于无休止循环运动中,不断与大气、土壤和岩石等环境介质接触、互相作用,使其具有复杂的化学成分、化学性质和物理性质。应用水源热泵时,除应关源水量外,还应关注水的温度、化学成分、浑浊度、硬度、矿化度和腐蚀性等因素。但是,目前对水源热泵所用水源的水质尚无有关规定,本文所提数据参考了冷却水水质标准和某些地下水回灌水质的有关规定。
4.1 温度
地表水水温 随季节、纬度和高程不同而变化。长江以北和高原地区,冬季地表水结冰,无法利用于制热供暖。夏季水温一般低于30℃,可用于制冷空调。
地下水水温 随自然地理环境、地质条件及循环深度不同而变化。近地表处为变温带,变温带之下的一定深度为恒温带,地下水温不受太阳辐射影响。不同纬度地区的恒温带深度不同,水温范围10—22℃。恒温带向下,地下水温随深度增加而升高,升高多少取决于不同地域和不同岩性的地热增温率。地壳平均地热增温率为2.5℃/100m,大于这一数值为地热异常。富含地下水的地热异常区可形成地热田。据19年统计数字,全国已发现地热点3200多处,开发利用130 处地热田,年开地热水3.45亿m3。目前,许多地热用户排放弃水温度较高(约40℃)。应用水源热泵可使弃水中的30℃温差得到再利用,大大提高地热能利用率。
4.2 含砂量与浑浊度
有些水源含有泥沙、有机物与胶体悬浮物,使水变得浑浊。水源含砂量高对机组和管阀会造成磨损。含砂量和浑浊度高的水用于地下水回灌会造成含水层堵塞。用于水源热泵系统的水源,含砂量应<1/20万,浑浊度<20毫克/升。如果水源热泵系统中装有板式换热器,水源水中固体颗粒物的粒径应<0.5毫米。
4.3 水的化学成分及其化学性质
自然界水中溶有不同离子、分子、化合物和气体,使得水具有有酸碱度、硬度、矿化度和腐蚀性等化学性质,对机组材质有一定影响。
酸碱度 水的pH值小于7时,呈酸性,反之呈碱性。水源热泵的水源pH值应为6.5-8.5。
硬度 水中Ca2+、Mg2+总量称为总硬度。硬度大,易生垢。水源热泵水源水中的CaO含量应<200 mg/L。
矿化度 单位容积水中所含各种离子、分子、化合物的总量称为总矿化度,用于水源热泵系统的水源水矿化度应<3g/L。
腐蚀性 水中Cl-、游离CO2等都具腐蚀性,溶解氧的存在加大了对金属管道的腐蚀破坏作用。应用水源热泵系统时,对腐蚀性、硬度高的水源,应在系统中加装抗腐蚀的不锈钢换热器或钛板换热器。
5、取水构筑物
从水源地向水源热泵机房供水,需建取水构筑物。依据水源不同,取水构筑物可分为地表水取水构筑物和地下水取水构筑物两类。
5.1 地表水取水构筑物
按结构形式地表水取水构筑物可分为活动式和固定式两种。活动式地表水取水构筑物有浮船式和活动缆车式。较常用的是固定式地表水取水构筑物,其种类较多,但一般都包括进水口、导水管(或水平集水管)和集水井,地表水取水构筑物受水源流量、流速、水位影响较大,施工较复杂,要针对具体情况选择施工方案。
5.2 地下水取水构筑物
地下水取水构筑物有管井、大口井、结合井、辐射井和渗渠等类型,表1列出了地下水取水构筑物的型式及适用范围[1]。在实际工程中,应根据地下水埋深、含水层厚度、出水量大小、技术经济条件不同选取不同形式。
5.3 管井
地下水取水构筑物中最常见的型式是管井,一般由井孔、井壁管、滤水管、沉砂管组成。井孔用钻机钻成,井壁管安装在非含水层处,用以支撑井孔孔壁,防止坍塌,井管与孔口周围用粘土或水泥等不透水材料封闭,防止地面污水渗入;滤水管安装在含水层处,除有井壁管作用外其主要作用是滤水挡砂;井管最底部为沉砂管,用以沉积水中泥沙,延长管井使用寿命。 6、水源系统设计和施工中应注意的问题
6.1 供水水源的可行性研究
拟用水源热泵系统时,应先调查工程场地的供水水源条件,向当地水管理部门咨询或请专业队伍进行必要的水文地质调查或水文地球物理勘查,了解是否有适合水源热泵利用的水源,通过可行性研究,确定利用地表水或是地下水的供水水源方案。
6.2 地表水源工程设计与施工
当选用地表水源时,设计取水量要考虑水温因素和需水量的保证率,取水构筑物标高与洪水季节水位的关系。施工应同时考虑供水管和排水管的布置。
6.3 管井工程设计和施工
拟选择地下水源和管井取水方案时,对规模较大的工程,应根据所需水量和地下水回灌需要,结合场地环境和水文地质条件,按一定灌比确定抽水井和回灌井井数、合理布置井位和井间距。井深应大于变温带深度,以保证冬季水源水温度>10℃。为防止回灌井堵塞,确保水源系统长期稳定供水,抽水井和回灌井应互相切换使用,因此各个井的井深和井身结构应相近。井中滤水管和滤网应有一定强度,能承受抽灌往复水流的压力变换。
6.4 管井施工质量
必须十分重视管井质量问题。应找专业队伍施工,做好每一工艺环节,建成优质井,才能获得较大出水量和优质水。一口优质井可以使用二十多年。成井质量不好,不仅影响井的寿命,还影响到取水和回灌效果,最终影响水源热泵正常工作和制热或制冷效果。甲方应参与最后阶段的抽水试验工作,认定可信和准确的抽水试验结果数据。管井竣工后,应由甲方、施工单位和行政主管部门或监理会同到现场,按合同规定的水量、水温和水质进行工程质量验收。
表1. 地下水取水构筑物的形式及适用范围
形式
尺 寸
深 度(m)
适 用 范 围
出 水 量 (m3/d)
地下水类型
地下水埋深
含水层厚度
水文地质特征
管井
井径50—1000mm150—600mm
井深20—1000m,常用300m以内
潜水,承压水,裂隙水,溶洞水
200m以内,常用在70m以内
大于5m或有多层含水层
适用于任何砂、卵石、砾石地层及构造裂隙、岩溶裂隙地带
单井出水量500-6000m3/d,最大可达2-3万m3/d
大口井
井径2—10m,常用4—8m
井深在20m以内,常用6—15m
潜水,承压水
一般在10m以内
一般为5-15m
砂、卵石、砾石地层,渗透系数最好在20m/d以上
单井出水量500-1万m3/d,最大为2-3万m3/d
辐射井
集水井直径4—6m,辐射管直径50-300mm,常用75—150mm
集水井井深3—12m
潜水,承压水
埋深12m以内,辐射管距降水层应大于1m
一般大于2m
补给良好的中粗砂、砾石层,但不可含有飘砾
单井为5000—5万m3/d,最大为3.1万m3/d
渗渠
直径为450—1500mm,常用为600—1000mm
埋深10m以内,常用4—6m
潜水,河床渗透水
一般埋深8m以内
一般为4—6m
补给良好的中粗砂、砾石、卵石层
一般为10—30m3/d.m,最大为50--100m3/d.m
7、水质处理与节水技术
7.1 水处理技术
如果水源的水质不适宜水源热泵机组使用时,可以取相应的技术措施进行水质处理,使其符合机组要求。在水源系统中经常用的水处理技术有以下几种:
除砂器与沉淀池 当水源水中含砂量较高时,可在水源水管路系统中加装旋流除砂器,降低水中含砂量,避免机组和管阀遭受磨损和堵塞。国产旋流除砂器占地面积较小,有不同规格,可按标准处理流量选配除砂器型号和台数。如果工程场地面积较大,也可修建沉淀池除砂。沉淀池费用比除砂器低,但占地面积大。
净水过滤器 有些水源,浑浊度较大,用于回灌时容易造成管井滤水管和含水层堵塞,影响供水系统的稳定性和使用寿命。对浑浊度大的水源,可以安装净水器进行过滤。
电子水处理仪 在水源中央空调系统运行过程中,冷凝器中的循环水温度较高,特别是在冬季制热工况下,水温常常在50℃以上,水中的钙、镁离子容易析出结垢,影响换热效果。通常在冷凝器循环水管路中安装电子水处理仪,防止管路结垢。
板式换热器 有些水源矿化度较高,对金属的腐蚀性较强,如直接进入机组会因腐蚀作用减少机组使用寿命。如果通过水处理的办法减少矿化度,费用很大。通常用加装板式换热器中间换热的方式,把水源水与机组隔离开,使机组彻底避免了水源水可能产生的腐蚀作用。当水源水的矿化度小于350mg/L时,水源系统可以不加换热器,用直供连接。当水源水矿化度为350-500mg/L时,可以安装不锈钢板式换热器。当水源水矿化度>500mg/L时,应安装抗腐蚀性强的钛合金板式换热器。也可安装容积式换热器,费用比板式换热器少,但占地面积大。
除铁设备 水源中央空调系统也可以用来供应生活热水。但有时水源水中含铁较多,虽然对制热没有影响,洗浴时对人体健康也不会造成损害,但溶于水中的铁容易生成氢氧化铁沉淀在卫生洁具上,形成有碍视觉感官的褐色污渍。当水中含铁量>0.3 mg/L时,应在水系统中安装除铁处理设备。
7.2 节水节电技术
水源热泵空调系统的水费和井泵运行费往往是工程系统运行费的最大开支,为合理有效利用水源,减少水源浪费和节约电费,在系统设计中应考虑用节水和节电技术措施。
混水器 为节约水源水用量,可在系统中安装混水设备,一般用容积式混水器,也可用射流式混水器。前者体积大费用低,后者体积小费用高。
变频调速器 为节约水源水量和电量,可以安装变频调速器控制水源水泵,取得减少耗水量和耗电量的效果。
8、地下水人工补给(俗称回灌)[2]
8.1 人工回灌及其目的
所谓地下水人工补给(即回灌),就是将被水源热泵机组交换热量后排出的水再注入地下含水层中去。这样做可以补充地下水源,调节水位,维持储量平衡;可以回灌储能,提供冷热源,如冬灌夏用,夏灌冬用;可以保持含水层水头压力,防止地面沉降。所以,为保护地下水,确保水源热泵系统长期可靠地运行,水源热泵系统工程中一般应取回灌措施。
8.2 回灌水的水质
目前,尚无回灌水水质的国家标准,各地区和各部门制定的标准不尽相同。应注意的原则是:回灌水质要好于或等于原地下水水质,回灌后不会引起区域性地下水水质污染。实际上,水源水经过热泵机组后,只是交换了热量,水质几乎没发生变化,回灌不会引起地下水污染。
8.3 回灌类型
根据工程场地的实际情况,可用地面渗入补给,诱导补给和注入补给。 注入式回灌一般利用管井进行,常用无压(自流)、负压(真空)和加压(正压)回灌等方法。无压自流回灌适于含水层渗透性好,井中有回灌水位和静止水位差。真空负压回灌适于地下水位埋藏深(静水位埋深在10米以下),含水层渗透性好。加压回灌适用于地下水位高,透水性差的地层。对于抽灌两用井,为防止井间互相干扰,应控制合理井距。
8.4 回灌量
回灌量大小与水文地质条件、成井工艺、回灌方法等因素有关,其中水文地质条件是影响回灌量的主要因素。一般说,出水量大的井回灌量也大。在基岩裂隙含水层和岩溶含水层中回灌,在一个回灌年度内,回灌水位和单位回灌量变化都不大;在砾卵石含水层中,单位回灌量一般为单位出水量的80%以上。在粗砂含水层中,回灌量是出水量的50-70%。细砂含水层中,单位回灌量是单位出水量的30-50%。灌比是确定抽灌井数的主要依据。
8.5 回扬
为预防和处理管井堵塞主要用回扬的方法,所谓回扬即在回灌井中开泵抽排水中堵塞物。每口回灌井回扬次数和回扬持续时间主要由含水层颗粒大小和渗透性而定。在岩溶裂隙含水层进行管井回灌,长期不回扬,回灌能力仍能维持;在松散粗大颗粒含水层进行管井回灌,回扬时间约一周1—2次;在中、细颗粒含水层里进行管井回灌,回扬间隔时间应进一缩短,每天应1—2次。在回灌过程中,掌握适当回扬次数和时间,才能获得好的回灌效果,如果怕回扬多占时间,少回扬甚至不回扬,结果管井和含水层受堵,反而得不偿失。回扬持续时间以浑水出完,见到清水为止。对细颗粒含水层来说,回扬尤为重要。实验证实:在几次回灌之间进行回扬与连续回灌不进行回扬相比,前者能恢复回灌水位,保证回灌井正常工作。
9、应用水源热泵的限制条件
水源热泵中央空调系统是一种高效、节能、环保型产品,但并不是在任何条件下都可以应用。其制约条件是电源和水源。目前,我国电力供应较充足,容易解决。而水源则是其主要限制条件,没有适合可靠的水源,就不能使用水源热泵。例如有些工程规模大,制冷或制热负荷大,所需水源水量很多,虽然工程场地有一定面积,也可以钻井,但因水量不足,难以完全满足工程负荷需要。有些工程所在场地下面虽然有地下水,但是由于该工程地处繁华市区,场地面积狭小,无处布井取水,场地环境条件限制了水源热泵系统的应用。
10、水源热泵应用工程实例
10.1 工程概况
为治理北京大气污染,北京市地质勘察技术院承担完成了地热加水源热泵供暖示范工程项目。该工程平面示意图见图1,冬季供暖的办公楼和家属楼共6幢,建筑面积约3万平方米,砖混结构,原暖通设计为燃煤锅炉供暖,末端为单管串联上送下回系统,铸铁四柱813型暖气片。示范工程热源为地热井,水温68℃,水量125m3/h,两眼45m浅层第四系水井,水温16℃,单井出水量50 m3/h ,井间距100m。
图1 地热热泵供暖工程平面图
图2 地热加水源热泵供暖工艺流程示意图
该工程因地热钻探施工周期限制,供暖试验分两期进行。工程流程示意图见图2。一期工程从1999年12月5日至2000年3月8日,以16℃地下水为热源,利用水源热泵对五层综合办公楼进行供暖试验。该楼建筑面积4078m2,建筑高度18m,三七墙,单层玻璃窗。供暖前,对运行14年之久的暖气管路进行了化学清洗,更换了部分锈损暖气片。为对比供暖效果和夏季进行制冷,在一、二层办公楼加装了风机盘管。由1号井抽出的16℃地下水送入热泵机组蒸发器吸热后由2号井回灌入地下,保护地下水源。热泵输出的52℃热水对办公楼供暖。
二期工程自2000年3月8日(地热井竣工)至4月5日,进行了地热加水源热泵供暖运行试验。地热井68℃地热水对2.5万 m2建筑进行一次供暖,部分地热水经过板换温度降至13℃后作为弃水排放,板换冷侧端的循环水经热泵热能转换后输出52℃热水对办公楼进行供暖。2000年夏季,利用1、2号抽、灌井和水源热泵机组对办公楼进行了制冷空调。
10.2 主要技术参数
热泵主机:清华同方人工环境设备公司生产的GHP型水源中央空调系统,1台,名义制热量360kW,制冷量275 kW,装机功率64 kW,制热工况下冷凝器出/回水温度52℃/42℃,制冷工况下蒸发器出回水温度7℃/12℃,制热/制冷工况切换由水管路阀门组开关实现。板式换热器:BR0.24Ⅶ型1台,12 m2,300 kW,40-13/10-15℃,不锈钢材质。冷水潜水泵:QJ50-50/6 型2台,流量50m3/h,扬程50m,功率7.5kW。南院暖气循环泵:ISG型80-160,3台,流量50 m3/h,扬程32 m,功率7.5 kW。冷水循环泵:DFB80-32B型2台,流量42 m3/h,扬程24m ,功率5.5kW。
10.3 运行效果
冬季供暖,水源热泵连续运行126天,性能稳定,以供回水温度(52/42℃)控制压机启停,平均每小时耗电40度,冷水井水源用量18 m3/h,室外气温-10 ℃时,多数房间室温18℃,供暖系统末端少数房间15-16℃,安装了风盘的房间室温可达20-25℃。夏季制冷,水源热泵连续运行120天,以冷冻水回水温度(12℃)控制压机启停,室外气温33-40 ℃,室内温度22-26℃。
参考文献:
[1] 供水水文地质手册,地质出版社,16。
[2] 汪光焘 主编,城市节水技术与管理,1994
更多关于工程/服务/购类的标书代写制作,提升中标率,您可以点击底部客服免费咨询:s://bid.lcyff/#/?source=bdzd
关于中央空调的高手进
中央空调常见故障与解决方法
1、机器露点温度正常或偏低,室内降温慢产生原因及解决方法
① 送风量小于设计值,换气次数少,请检查风机型号是否符合设计要求,叶轮转向是否正确,皮带是否松弛,开大送风阀门,消除风量不足因素。
② 有二次回风的系统,二次回风量过大,请调节,降低二次回风风量。
③ 空调系统房间多、风量分配不均,请调节,使各房间风量分配均匀。
2、系统实测风量大于设计风量产生原因及解决方法
① 系统的实际阻力小于设计阻力,风机的风量因而增大,有条件时可以改变风机的转数。
② 设计时选用风机容量偏大,请关小风量调节阀,降低风量
3、 统实测风量小于设计风量产生原因及解决方法
① 系统的实际阻力大于设计阻力,风机风量减小,条件允许时,改进风管构件,减少系统阻力。
② 系统有阻塞现象,请检查清理系统中可能的阻塞物。
③ 系统漏风,应堵漏。
④ 风机达不到设计能力或叶轮旋转方向不对,皮带打滑等,检查、排除影响风机出力的因素。
4、室内噪音大于设计要求产生原因及饩龇椒?BR> ① 风机噪音高于额定值,请测定风机噪音,检查风机叶轮是否碰壳,轴承是否损坏,减震是否良好,对症处理。
② 风管及阀门、风口风速过大,产生气流噪声,请调节各种阀门、风口,降低过高风速。
③ 风管系统消声设备不完善,请增加消声弯头等设备。
5、系统总送风量与总进风量不符,差值较大产生原因及解决方法
① 风量测量方法与计算不正确,请复查测量与计算数据。
② 系统漏风或气流短路,请检查堵漏,消除短路。
6、室内气流速度分布不均有死角产生原因及解决方法
① 气流组织设计考虑不周,应根据实测气流分布图,调整送风口位置或增加送风口数量。
② 送风口风量未调节均匀,不符合设计值,应调节各送风口风量使与设计要求相符
什么是空调机的制冷量和冷负荷?
空调机的制冷量是指空气通过蒸发器、表面冷却器、喷水室后被降温所需的冷量。
空调冷负荷是指空调房间为维持一定温、湿度参数,排除室内余热、余湿所需的冷量。
在稳定的工况下,空调机的制冷量等于空调冷负荷,送风管道冷量损失和排风的冷量损失之和。
什么是露点温度?什么叫机器露点温度?
在空气所含水气量(含湿量)不变的情况下,通过冷却降温而达到饱和状态时的温度称为露点温度。空气在露点温度下,相对湿度达100%,此时干球温度、湿球温度、饱和温度及露点温度为同一温度值。
在空气调节技术中,当空气通过冷却器或喷淋室时,有一部分直接与管壁或冷冻水接触而达到饱和,结出露水,但还有相当达的部分空气未直接接触冷源,虽然也经过热交换而降温,但他们的相对温度却处在90~95%左右,这时的状态温度称为机器露点温度。
什么叫空调、空调基数和空调精度?
空调是空气调节的简称,是使室内空气温度、湿、清洁度和气流速度(简称四度)保持在一定范围内的一项环境工程技术,他满足生活舒适和生产工艺两大类的要求。
空调基数---指空调房间所要求的基准温度和相对湿度。
空调精度---指空调房间的有效区域内空气的温度,相对湿度在要求的连续时间内允许的波动幅度。
凡是△t在1℃以上的空调系统叫一般精度的空调,一般精度的空调系统可以通过手动来控制。
当△t=±1℃的空调系统宜做成自动控制。
当△t小于1℃的空调系统叫高精度空调系统,应用自动控制
空调系统按空气处理设备的集中程度为几类?
集中式空调系统---所有的空气处理设备全部集中在空调机房内,根据送风的特点,它又分为单风道系统,双风道系统和变风量。
半集中式空调系统---除了安置在集中的空调机房内空调处理设备之外,还有分散在空调房间内的空气处理末端设备,如风机盘管等设备。
局部式空调系统或全分散空调系统---即空调机组(又称空调器),这种机组的冷热源、空气处理设备,风机和自动控制元件,全部集中在一个箱体内。
空调环境的舒适条件
根据国家标准《暖通风与空气调节设计规范》,舒适性的室内标准为:
夏季:
温 度: 24-28°C
相对温度: 40-65%
风 速: 0.3m/s
冬季:
温 度: 18-22°C
相对温度: 40-60%
风 速: 0.2m/s
舒适性参数是通过人体感觉测试得到的。要想达到舒适条件,必须在设计中考虑好送风条件(温度、风量等)和风口设计(位置和风速等),尤其是风速条件。上述舒适标准的风速是整个高宽截面上的抽象速,应使人体处于主要是回风的空调区。
大家对壁挂和柜机的冷冲击有印象,那是因为空调风速大,人体处于风的混合区,此时空调相当于一台冷风扇,大部分情况,人体感到冷而不感觉舒适。人体调节器官承受很大的负荷,时间较长会使人体调节功能紊乱,产生感冒甚至空调病。因此有空调不宜常开,睡觉时不开空调等说法,而这实际上是因为普通空调功能不够或安装位置不合理。使用空调应以人为本,空调安装之前就应设计好,使家居大部分处于舒适的环境条件下,目前的壁挂和柜机受到布置安装、功能等方面的限制,在大多数的情况下,只是一个冷源,远未起到舒适空调的作用。
另外,壁挂和柜式空调把完整的家居分成有空调和无空调区或虽各房间都有空调,但工作条件不一样,人在不同房间之间活动还是感?quot;冷(热)冲击"不舒服。只有用家用中央空调方可解决上述问题,达到舒适空调的条件,提高居所环境质量。
空调机安装后的几点注意事项
1. 经专业人员调试好机组后,机组所有安全保护开关已设定完毕,用户切勿自行调试。
2. 用户请仔细阅读使用说明。
3. 按维护手册要求定期清洁相关部位或配件。
4. 保持机组周围空气畅通,不在其上方或附近堆积杂物。
5. 当机组出现故障时,应请指定的专业维修人员进行维修,切勿自行找人维修
风机盘管安装规范简析
汗,要打的字太多,编辑得眼花,只好再搞个号来了。。。OTL
之前我的确犯了个错误,VRF是多联机的总称,这我倒不太接触,回头会记下的。因为我们基本把数码多联机和VRV分开谈,因为两者原理是完全不同的。
撇开题外话,yaoyoung你大概不太了解主机的实际行情啊,要谈单位制冷量的投入的话,风冷模块机组可比水冷机组贵得多了,我们一台600TON的离心机至少卖120万多点,105TON的风冷单冷机可就要60万了,热泵要60多万~当然,价格仅供参考,毕竟我是做技术的,不是做销售的~不过大致是差不多的~你觉得哪个划算哈=w=
至于多联机,搞个几百台内机和几十台外机的又是啥价格~总冷量那么多你没300万拿得下么?
另外温度控制1度误差那还能叫精确么...我瀑布汗...湿度控制呢?还要另外配末端?你饶了我吧= =b
楼主可以自己去询询我刚才说的几种机组的价,总冷量要一样的,顺便比较一下能耗。虽然很多厂家也偷冷量,但是毕竟厂家白纸黑字给出的结果可比销售员嘴上的牢靠多了。不是么~
顺便问下yaoyoung朋友,多联机的效率超过3.0和水冷模块机效率超过5.0是哪里来的数据哈?我和上海节能部打了那么多时间交道,也没听说过有这东西。
多联机外机本身的配置就是不足的,满负荷能到名义冷量他们就该谢天谢地了。还要超过1级能效...当然部分负荷效果超过3.0还是可能的,不过测试条件不同根本没有任何比较价值。我给出的能效标准是根据大金VRV3的样本,不晓得你的数据从何而来。就算是根据ARI工况的测试条件,多联机的综合效率也不会达到水冷冷水机的级别.不然美国佬还用啥水冷冷水机组啊?美国人还用啥特灵、开利、约克啊?都大金日立的多联机去了~
顺便一提,美国的ARI工况是用于评价空调在部分负荷下效果的一个标准,虽然yaoyoung朋友不至于那么外行,但是为了大家理解方便还是解释一下:ARI工况就是取机组在100%,75%,50%和25%的负荷下的运转情况,根据一般空调实际在这些情况下运行时间的比例,以差分计算得出。其中100%负荷占1%;75%负荷占42%; 50%负荷占45%;25%负荷占12%。我国的能耗测试现在也用了这种方式。
另外风冷模块机能达到5.0简直就是大笑话。再次强调下,你提能效之前,最好先把我国测试能效的工况和国家能效级别读一读,别连风冷机组和水冷机组、标准工况和变工况也分不清楚,这就要和麦克维尔号称EER超过17那样贻笑大方了。吹牛可以,不要吹得超过理论极限值。
另外yaoyoung说水冷空调能量调节单一那就让人更看不懂了。你八成没做过大机组设计,自然不会知道真正有技术含量的主机串联上游、全热回收和冰/水蓄冷之类的设计,这些都需要水冷主机来完成,另外离心机组可以调节进气导叶角度,螺杆机组可以调节压缩行程,这些都是比变频多联系统成熟得多的控制系统,更何况现在各大空调厂商都在推广相匹配的冷冻机房群控系统,包括一次泵变流量、大温差、冷却塔控制等等,这更不是简单的多联系统能够比得上的东西。
说了半天已经和楼主的Case关系不大了,就当随便看看吧~=w=
风机盘管是根据什么来选型的?
导语:近几年空调冰箱的使用越来越多,那么其中一个最为关键的零部件就是风机盘管。经过多年努力,风机盘管技术不断发展,所以它运用的领域也在不断的增加,目前主要运用在办公室、医院、科研机构等一些场所。风机盘管的广泛应用随之而来的就是风机盘管的安装问题,那么我们应该怎样进行风机盘管的安装,安装时有什么规范呢?接下来就和小编一起了解一下吧。
风机盘管安装规范-施工准备工作
1.风机盘管和主、辅材料已运抵现场,安装所需工具已准备齐全,且有安装前检测用的场地、水源、电源。
2.建筑结构工程施工完毕,屋顶做完防水层,基准线已测放。
3.空调系统干管安装完毕,接往风机盘管的支管预留管口位置、标高符合要求。
4.已编制施工方案,完成安全技术交底。
5.参照有关专业图和建筑装修图,核对风机盘管的位置、标高是否正确。有问题及时与设计和有关人员研究解决,办理变更洽商记录。
6.电机试运转:风机盘管应按总台数的10%通电进行三速试运转检查。机械部分不得有摩擦,电气部分不得漏电,运转平稳、噪声正常。
7.表冷器水压试验:风机盘管的表冷器应按总台数的10%进行水压试验,不得渗漏。
风机盘管安装规范-施工规范
支吊架安装:1.风机盘管应设置独立的支、吊架固定;
2.根据施工图确定吊杆生根位置,生根一般用膨胀螺栓;
3.按风机盘管不同的型号、重量,选取相应规格的吊杆;
4.减振吊架的安装应符合设计要求。
风机盘管安装:1.卧式风机盘管安装的高度、位置应正确,吊杆与盘管连接应用双螺母紧固找平,并在螺母上加3㎜厚的橡胶垫;
2.吊装盘管应坡向水盘排水口;
3.暗装的卧式风机盘管在吊顶处应留有检查门,便于机组维修;
4.立式风机盘管安装应牢固,位置及高度应正确。
连接配管:1.风管、回风箱及风口与风机盘管机组连接应严密、牢固;
2.风机盘管与冷热媒管的连接,应在管道系统冲洗、排污后且再循环试运行2h以上,水质合格后进行,以防杂物堵塞表冷器; 3.风机盘管的进出水管接头及排水管接头不得漏水;进出水管必须保温,防止产生凝结水; 4.风机盘管与管道相连接时宜用软接管或紫铜管,其耐压值应大于等于1.5倍的工作压力。软管的连接应牢固,不应有扭曲和瘪管现象; 5.与凝结水管连接应用软管,其长度一般不大于300mm,软管宜用透明胶管,并用喉箍紧固,防止渗漏。凝结水应畅通地流到指定位置,水盘应无积水现象。风机盘管的安装应该按照规范的方法进行安装,只有这样才能保证他的正常工作,同时还能延长您的风机盘管的使用寿命。上文中小编已经详细介绍了风机盘管在安装时应该注意的事项以及操作规范,只要大家在操作时严格按照规范,就可以保证自己的风机盘管安全工作。今天小编关于风机盘管安装的相关介绍已经结束了,希望对朋友们能够有所帮助。
中央空调螺杆式冷水机组加新风机组、风机盘管系统具体指什么?
基本原则是:风量和冷量,两者不能同时满足,优先满足风量。
空调室内制冷负荷包括显热负荷和湿热负荷,两者之和称全热量。一般空调设备厂提供的产品性能表(以下称样本)中的制冷量,都是指在干球27C,湿球19.5 C,冷冻水入口温度7℃ 时,高档风量下的全冷量, 即使有提供其他温度工况温度冷量也一般只到25 C室温,那么对于象22℃ 室温情况下将无法直接套用样本选型。在空调室温降低时,一方面由于室内外温差加大,造成更多的室外热量传人空调室, 另一方面, 由于冷冻水与室温的温差减小,又造成风机盘管实际制冷量较样本冷量减小,这就要求用一种合适的方法来选型,以达到各种工况的要求。
在风盘+新风系统中,处理模式是新风处理到室内焓值,风盘承担室内冷负荷,民用建筑空调设计给出计算方法步骤是
1、画热湿比线与90%相对湿度交点确定送风状态点,
2根据状态点确定总送风量,减去新风量得风盘送风量
3根据风量选择风盘型号台数。
4、校核风盘冷量。在给出的计算例子中,校核的冷量比室内冷负荷大得多。
在上述选型过程中,风量是引导房间内部热量交换的重要媒介,如果风量达不到,热湿比线就会偏离原先的设定过程,所以通常上优先考虑风量。
风机盘管安装时应该注意哪些事项?
多套风冷定频机加风机盘管系统
a.系统:由多个风冷式冷水机组、风机盘管系统组成,水泵内置在风冷主机内。单机最大制冷量31kw。
b.管道:主机和室内风机盘管由管道系统连接,管内工质为冷冻水。水管道可用镀锌钢管或PPR管。冷凝水管就近排入下水系统。
c.安装位置:每层一台或多台主机,布置在相应楼层的阳台上;或者多台主机布置在屋顶。每个房间一台或多台风机盘管,风机盘管布置在室内吊顶内。
d.特点:
a专用微电脑控制器:实现无人操作与远程控制。
b)空气冷却方式:省去冷却塔、冷却水泵、管道系统,安装迅速、方便。
c)安装、布置灵活:可直接安装于阳台、屋顶或庭院中,免去机房建设,既节省了空间,又降低了一次性投资费用。
d)整机在工厂经严格的负荷试运行、测试、检验后出厂,内置水泵,用户只需在现场装接进出水管和电源,即可投入使用。
e)热泵形式供热:无需建造锅炉房,安全清洁,降低造价,避免环境污染。
f)性能可靠:进口压缩机、换向阀,保证产品性能、质量。
g)保护装置完备:温度保护开关、高可靠性空气开关、高低压力开关、干燥过滤器、防冻开关,环境温度控制、除霜控制及延时启动装置,确保机组的安全运行。
h)远程控制:在室内可完成对机组的控制,方便操作。
i)噪音低:低噪音的轴流风叶,且精确平衡;全封闭式涡旋压缩机及完备的减震装置,可以有效降低运转噪音,减少对周围环境的影响。
j)防腐性能高:外壳用电镀锌钢板并对其表面用聚酯涂料进行防腐喷涂处理,可防止氧化腐蚀。
2)多套风管机系统
a.系统:该系统由风冷压缩冷凝主机、风管机内机组成。
b.管道:内外机由铜管连接,管内工质为F22药水。
c.安装位置:每个房间一台或多台内机。每层一台或多台主机,布置在相应楼层的阳台上;或者多台主机布置在屋顶。
1、基本常识
(1)室内风机盘管要水平安装。
(2)用直径Φ10mm吊杆吊装,吊杆做防锈处理,与内机的固定螺母紧固不松动。
(3)吊装位置符合室内空气循环和图纸要求,与楼板之间要有一定的间距。
(4)使用分集水器的安装方式:水模块与分水器之间主管用Φ40或者Φ32的PPR管,分集水器与风机盘管之间使用铝塑管连接,流量分配均匀不易发生泄漏。水压试验压力0.6Mpa保持2小时无泄漏。
(5)管路必须保温,保温层厚度20mm,冷凝水管路保温层厚度为10mm。
(6)用U型卡或者其它方式固定,对保温材料的压缩量不大于2至3毫米。
(7)冷凝水管路要保持一定坡度,对于自然排水的风机盘管的排水出口的坡度不小于1%,确保排水顺畅。满水试验不漏水,排水试验不存水。
(8)管路用吊支架固定。
2、风机盘管安装注意事项
1、 ?当吊顶高度超过3米时,不宜选用天花式机型。
原因:吊顶太高选用天花机,暖风吹不下来,影响制热效果。
2、冷凝水管与机组之间应用软管连接。
原因:不使用软管连接机组运行时产生的振动将导致水管脱落漏水,管路振裂及噪音等故障。
3、当房间高度超过3米时,不宜用顶吹风散流器风口,应用双层百叶风口下吹风口。
原因:冬季暖风吹不下来,影响制热效果。
4、室内气流组织要合理,避免气流短路、断路。
原因:短路主要是指出风口和回风口布置不合理,送风未到达人活动的范围就通过回风口回到了机组。断路主要是指出回风不在同一空调区域或出风达不到空调区域,短路及断路都将严重影响制冷、制热效果。
3、风管安装注意事项
1、风机盘管必须安装回风箱。
原因:没有回风箱,空调区域室内空气不能有效循环,导致制冷、制热效果差。
2、出风口、回风口及风管尺寸、材料符合规范要求。
原因:风口、风管过小,必然导致风速偏高或风量不足,产生噪音、制冷制热差果差。一般以出风口风速不大于2m/s确定出风口尺寸,回风风速不大于1.5m/s确定回风口尺寸。
3、风管与出风口之间必须用帆布等软性连接。
原因:如不是软连接,机组运行时的振动将沿风管传递,导致震动噪音。
4、当用软风管时,软管长度不应超过4米。
原因:一般是FP-136WA至238WA机组用软风管较多,且软风管的阻力大,而机组静压小,若接管太长,会使最远的风口风量小和各个风口间风量不均匀。
4、水系统安装注意事项
1、风机盘管与水管连接时必须使用不锈钢软接管。
原因:可以防止机组运行时振动传递到水管,减少噪音和管道振动松脱、开裂漏水等故障。
2、风机盘管与水管相连的软接管安装必须是水平直接,不得弯曲。
原因:因为软接管弯曲过度时,薄弱处会导致破裂漏水。
3、水管与风机盘管相连时,应在进水管上安装“Y”形过滤器。
原因:防止水系统杂质、赃物进入风机盘管损坏和堵塞换热器。
4、在有节能要求的系统安装电动二通阀时,必须将其安装在回水管上。
原因:保证风机盘管所需求的正常水流量。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。