金属元素的熔点如何判断_金属单质熔点高低怎么判断
1.第一主族元素单质的熔点怎么变化?
2.金属熔沸点的比较
3.元素周期表中沸点熔点高低的判断,在线等,急
4.熔点高低怎样判断
金属晶体熔沸点比较是如下:
1.不同类型晶体熔、沸点的比较区别。
(1)不同类型晶体的熔、沸点高低一般规律:原子晶体>离子晶体>分子晶体。
(2)金属晶体的熔、沸点差别很大,如钨、铂等熔、沸点很高,汞、铯等熔、沸点很低。
2.同种类型晶体熔、沸点的比较区别。
(1)原子晶体。
原子半径越小、键长越短、键能越大,物质的熔、沸点越高,如熔点:金刚石>碳化硅>硅。
(2)离子晶体。
一般地说,阴、阳离子的电荷数越多,离子半径越小,则晶格能越大,晶体的熔、沸点越高,如熔点:MgO>MgCl2,NaCl>CsCl。(3)分子晶体。
①分子间范德华力越大,物质的熔、沸点越高;具有氢键的分子晶体熔、沸点反常高。如H2O>H2Te>H2Se>H2S。
②组成和结构相似的分子晶体,相对分子质量越大,熔、沸点越高,如SnH4>GeH4>SiH4>CH4。
③组成和结构不相似的分子晶体(相对分子质量接近),其分子的极性越大,熔、沸点越高,如CH3Cl>CH3CH3。
④同分异构体,支链越多,熔、沸点越低。
如正戊烷>异戊烷>新戊烷
(4)金属晶体熔、沸点的区别。
金属离子半径越小,离子电荷数越多,其金属键越强,金属晶体的熔、沸点越高,如熔、沸点:Na<Mg<Al。
金属晶体特性:
1.物理性质。
金属阳离子所带电荷越高,半径越小,金属键越强,熔沸点越高,硬度也是如此。例如第3周期金属单质:Al > Mg > Na,再如元素周期表中第ⅠA族元素单质:Li > Na > K > Rb > Cs。硬度最大的金属是铬,熔点最高的金属是钨。
2.延展性。
当金属受到外力,如锻压或捶打,晶体的各层就会发生相对滑动,但不会改变原来的排列方式,在金属原子间的电子可以起到类似轴承中滚珠的润滑剂作用。所以在各原子之间发生相对滑动以后,仍可保持这种相互作用而不易断裂。因此金属都有良好的延展性。
以上内容参考:百度百科-金属晶体
第一主族元素单质的熔点怎么变化?
(1)同一周期元素随原子序数的递增,元素组成的金属单质的熔点递增,非金属单质的熔点递减(由于C是原子晶体,溶沸点远大于同周期其他元素);
(2)同一族元素从上到下,元素组成的金属单质的熔点递减,非金属单质的熔点递增(C和Si例外,C>si)
金属熔沸点的比较
同主族(第一主族元素)的金属元素,越往下熔沸点越低。因为金属原子半径越大,核对外层电子引力弱,易电离,所以熔沸点低。而第七主族,都是形成双原子分子,即都是小分子,分子之间没有化学键作用,只是弱的分子间作用力;而分子间作用力与分子量的大小有关,分子量越大,熔沸点越高;卤素单质的分子量从上到下增大,因此熔沸点升高。 其实,第四主族虽然包括金属和非金属,但它们的单质都是大分子,也就是说,其熔沸点决定于化学键的强弱,其中既有共价键,又有金属键,但成键能力规律是一致的,就是半径越小,成键能力越强,因此第四主族的熔沸点也是从上到下降低的。原因:第一主族是金属,金属是大分子(整块金属可以看成为一个分子),其熔沸点只与化学键(金属键)强弱有关,金属键越强,则熔沸点越高;而金属键与半径有关,原子半径越小,形成的金属键越强,熔沸点越高;第一主族中的碱金属从上到下半径是增大的,因此熔沸点是降低的。同一周期主族元素,从左到右,单质的熔沸点先升后突降,到非金属时不太规律(与分子大小有关);元素周期表中:
元素周期表中沸点熔点高低的判断,在线等,急
金属熔沸点需要通过元素周期表中的元素规律进行比较:
同周期金属单质,从左到右熔沸点升高;同主族金属单质,从上到下熔沸点降低;合金的熔沸点比其各成分金属的熔沸点低;金属晶体熔点差别很大,如汞常温为液体,熔点很低,而铁等金属熔点很高。
熔点高低怎样判断
(1)同一周期元素随原子序数的递增,元素组成的金属单质的熔点递增,非金属单质的熔点递减(由于C是原子晶体,溶沸点远大于同周期其他元素);
(2)同一族元素从上到下,元素组成的金属单质的熔点递减,非金属单质的熔点递增(C和Si例外,C>si)
1、同晶体类型物质的熔沸点的判断:一般是原子晶体>离子晶体>分子晶体。金属晶体根据金属种类不同熔沸点也不同(同种金属的熔沸点相同)金属(少数除外)>分子。
2、原子晶体中原子半径小的,键长短,键能大,熔点高。
3、离子晶体中,阴阳离子的电荷数越多,离子半径越小,离子间作用就越强,熔点就越高。金属晶体中金属原子的价电子数越多,原子半径越小,金属阳离子与自由电子静电作用越强,金属键越强,熔点越高,一般来说,金属越活泼,熔点越低。分子晶体中分子间作用力越大,熔点越高,具有氢键的,熔点反常地高。
扩展资料:
物质的熔点,即在一定压力下,纯物质的固态和液态呈平衡时的温度,也就是说在该压力和熔点温度下,纯物质呈固态的化学势和呈液态的化学势相等,而对于分散度极大的纯物质固态体系(纳米体系)来说,表面部分不能忽视,其化学势则不仅是温度和压力的函数,而且还与固体颗粒的粒径有关,属于热力学一级相变过程。
熔点是固体将其物态由固态转变(熔化)为液态的温度,缩写为m.p.。而DNA分子的熔点一般可用Tm表示。进行相作(即由液态转为固态)的温度,称之为凝固点。与沸点不同的是,熔点受压力的影响很小。而大多数情况下一个物体的熔点就等于凝固点。
在有机化学领域中,对于纯粹的有机化合物,一般都有固定熔点。即在一定压力下,固-液两相之间的变化都是非常敏锐的,初熔至全熔的温度不超过0.5~1℃(熔点范围或称熔距、熔程)。但如混有杂质则其熔点下降,且熔距也较长。因此熔点测定是辨认物质本性的基本手段,也是纯度测定的重要方法之一。
测定方法一般用毛细管法和微量熔点测定法。在实际应用中我们都是利用专业的测熔点仪来对一种物质进行测定。
相同条件不同状态物质
一、在相同条件下,不同状态的物质的熔、沸点的高低是不同的,一般有:固体>液体>气体。例如:NaBr(固)>Br2>HBr(气)。
二、不同类型晶体的比较规律
一般来说,不同类型晶体的熔、沸点的高低顺序为:原子晶体>离子晶体>分子晶体,而金属晶体的熔、沸点有高有低。这是由于不同类型晶体的微粒间作用不同,其熔、沸点也不相同。
原子晶体间靠共价键结合,一般熔、沸点最高;离子晶体阴、阳离子间靠离子键结合,一般熔、沸点较高;分子晶体分子间靠范德华力结合,一般熔、沸点较低;金属晶体中金属键的键能有大有小,因而金属晶体熔、沸点有高有低。
三、同种类型晶体的比较规律
⒈原子晶体:熔、沸点的高低,取决于共价键的键长和键能,键长越短,键能越大,熔沸点越高。
例如:晶体硅、金刚石和碳化硅三种晶体中,因键长C—C<C—Si< Si—Si,所以熔沸点高低为:金刚石>碳化硅>晶体硅。
⒉离子晶体:熔、沸点的高低,取决于离子键的强弱。一般来说,离子半径越小,离子所带电荷越多,离子键就越强,熔、沸点就越高。
例如:MgO>CaO,NaF>NaCl>NaBr>NaI。
⒊分子晶体:熔、沸点的高低,取决于分子间作用力的大小。一般来说,组成和结构相似的物质,其分子量越大,分子间作用力越强,熔沸点就越高。
⒋金属晶体:熔、沸点的高低,取决于金属键的强弱。一般来说,金属离子半径越小,自由电子数目越多,其金属键越强,金属熔沸点就越高。
参考资料:
百度百科——熔点声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。