1.立式明装风机盘管的系统试压及加水

2.楼宇自控对风机盘管的控制点表内容一般包括什么?

3.风机盘管怎么安装?

4.风机盘管的风量与制冷面积的换算如:100平米

5.求四管制风机盘管接线原理图,要几根线到温控器,分别的作用,谢谢了

6.多联机空调和风机盘管系统哪个比较好

风机盘管如何防冻_风机盘管冻了怎么办

问题很多啊,分更多,一个一个答:-)

1、严格意义上,新风机+末端盘管系统和空调机组是有区别的,但很多工程上并不做严格区分,往往是混用的,然后随便叫一个名字就行。

新风机是抽取户外空气,送入户内的,+盘管系统调温调湿,主要也是满足户内需求。空调严格上是没有新风的,只是内部循环调温调湿。

但现在很多空调都是带新风的,回风比例可调,这样就模糊了这两个系统的区别,但是对工程上是实用主义,不在乎这些说法。

2、新风机严格上是没有回风 ,空调机一定是有回风的。

3、风阀究竟是调节阀还是开关阀,要看工程需要,绝大部分工程都用可调节的风阀,但是风阀调风是很耗电的,多数应用变频调风比较节能。

当然,如果只有一台风机,而既有新风又有回风的话, 通过风阀调节新-回风比例是可取的。

4、新风温度不是必须检测的,因为调控目标是室内的温湿度,从预算和维护角度讲,温湿度探头较少比较好。但是如果要追求节能及较好的系统性能,检测新风温度是必要的,通过比较室内外风温,可以以较少的能耗达到较好的调控效果,比如,夏季室外温度较高时,新风温度高,就宜增加回风比例,以减少能耗,而夜间低谷时,新风温度低,就可以适当加大新风比例,以改善室内空气质量。

新风温度可以不必每个都检,只要抽取有代表性的,作为统一的户外风温即可。

立式明装风机盘管的系统试压及加水

1. 适用范围

本机组使用220v交流电源,环境温度为-30°C+65°C,海拔不超过4000米

2。 机组安装

机组安装应保持水平,卧式暗装机组安装时必须留出维修用检查口,安装后如建筑装修还在施工,外表须加以保护,以防垃圾进入。

3。 管道安装及防露措施

1)机组安装时,进出水管应设阀门,以调节水量。管路的最高处应设放气阀,最低处应设放水阀。

2)对接进、出水管时,不得直接对机组接管强行施加压力,必须用软管(橡胶,不锈钢)进行连接,以免损坏表冷器而造成漏水。

3)管道及阀门应有良好的保温措施,以防结露。

4)凝结水管可用PVC或PPR管,安装时需要一定的坡度,以利排水。

4, 电气接线

1)接线时要严格按照机组上的接线图操作,注意:电源零线必须和图示的黄线连接,机组接线盒内有接地螺栓,供安装时与保护接地连接

2)接勿将两台以上的机组并联使用同一开关,这样容易会产生影响机组正常运转的回路电流,严重时会造成电机损坏。

3)电机轴承用全封闭滚珠轴承,无需加润滑油

5, 供水要求

禁止使用蒸气及100°C以上的热水,一般使用热水温度不超65°C,如超过65°C必须使用软化水,否则会对管子产生锈蚀而影响传热效果

6, 防冻措施

如果外部温度低于0°C时停止运转循环泵 ,管路内的水会冻结,引进机组盘管及配管冻裂,所以必须取以下措施:1)连续运转循环泵;2)输用适当浓度的防冻液。

7使用维护

1) 使用前应先打开机组的放气阀,将管道内的空气排除,待水流出后再将阀关闭

2) 机组运转达前应先转动风机叶轮,如无碰壳,则可通电

3) 机组应定期检查电机运转是否正常,有无异物卡进风壳内,如出现出风不畅或无风,应关机检查,电机是否烧坏,风管是否堵塞,

4) 如有风而不制冷或制热,应检查表冷器是否堵塞,或阀门是否开启

5) 如发现漏水,应检查:1保温是否良好,2凝结水排除是否通畅;3表冷器铜管是否损坏。

6) 管路中水过滤器一般使用一个月左右清洗一次,对于表冷器则视积灰程度定期清洗。经保证换热效率。

楼宇自控对风机盘管的控制点表内容一般包括什么?

立式明装风机盘管空调系统进行系统试压之前,首先要制定试压方案,选择合适的试压泵,制定合理的试压水路。在试压的过程中要认真记录试压状况,随时监控系统压头的变化,制定试压方案时要注意以下几点:

1,向盘管加水前必须打开集水头上的放气阀,戴盘管内的空气排尽后关闭阀门。

2,水压试验应在5℃以上的气温条件下进行,否则应有防冻措施。

3,水压试验要分段升压,升压时要缓慢均匀,待水泵停止运转水压稳定后仔细检查各连接处是否漏水。不得带水压进行修补工作。

4,向系统内加水必须分层加水,分层排气,逐层试验操作。

5,确认系统管路无泄漏后,最好按照设计方案对管路进行保温处理。

风机盘管怎么安装?

楼宇自控对风机盘管的控制点表内容通常涵盖了多个关键方面,以确保风机盘管的正常运行和有效管理。以下是一些常见的控制点:

温度控制:这是风机盘管控制的核心内容,通常通过温控器来实现。温控器根据设定的温度与实际室内温度的比较,控制风机盘管的运行,以达到设定的舒适温度。

风速控制:风机盘管的风速通常分为高、中、低三档,可以根据实际需求进行调节。这种控制可以确保在不同的环境和需求下,都能提供合适的风量。

运行状态与启停控制:通过楼宇自控系统,可以实时监控风机盘管的运行状态,如是否正常运行、是否出现故障等。同时,系统还可以控制风机盘管的启停,以满足节能和舒适度的需求。

阀门控制:包括水阀和加湿阀等。系统根据回风温湿度与设定温湿度的比较,对水阀开度和加湿阀开度进行PID调节,以实现对室内温湿度的精确控制。

滤网压差报警:当过滤网阻塞时,压差开关会发出报警信号,提醒人员及时清洗滤网,以保证风机盘管的正常运行和空气的清洁度。

防冻控制:在寒冷地区,特别是在过渡季节天气骤然变冷的情况下,盘管内的冷冻水容易冻裂。因此,系统通常会设置防冻开关,当发生报警时,会联动停止风机,关闭风阀,打开水阀使管内水流动,以防止冻裂。

故障检测与报警:系统可以检测风机盘管的各种故障,如电机故障、传感器故障等,并及时发出报警提示,以便及时处理。

此外,根据不同的需求和场景,可能还会有其他特定的控制点,如对高、低、溢流液位进行实时监测,在水溢出或过低时及时发出报警提示等。

需要注意的是,具体的控制点内容可能会因不同的楼宇自控系统和风机盘管型号而有所差异。因此,在实际应用中,应根据具体情况进行选择和配置。

风机盘管的风量与制冷面积的换算如:100平米

风机盘管是中央空调理想的末端产品,由热交换器,水管,过滤器,风扇,接水盘,排气阀,支架等组成,其工作原理是机组内不断的再循环所在房间的空气,使空气通过冷水(热水)盘管后被冷却(加热),以保持房间温度的恒定。

风机盘管安装流程为:施工准备——电机检查试转——表冷器检查——打气试压——吊架安装——风机盘管安装——连结配管这几大步骤。在风机盘管安装的过程中有两点需要牢记:

1、在安装风机盘管时,风口表面应横平竖直,必须紧贴墙面或装饰面板,使其美观大方;

2、出风口应设置在室内人员活动的主要场所,进排风口应无障碍物,两者应有一定的间距,不能形成短路现象。

风机盘管支架固定安装

1.风机盘管应设置独立的支、吊架固定。

2.根据施工图确定吊杆生根位置,生根一般用膨胀螺栓。

3.按风机盘管不同的型号、重量,选取相应规格的吊杆。

4.减振吊架的安装应符合设计要求。

风机盘管安装要求

1.卧式风机盘管安装的高度、位置应正确,吊杆与盘管连接应用双螺母紧固找平,并在螺母上加3㎜厚的橡胶垫。

2.吊装盘管应坡向水盘排水口。

3.暗装的卧式风机盘管在吊顶处应留有检查门,便于机组维修。

4.立式风机盘管安装应牢固,位置及高度应正确。

风机盘管安装注意事项:

1、搬运风机盘管机组应小心轻放,不得手执叶轮、蜗壳搬运风机盘管机组,以免叶轮变形。不得把进出水管作为搬运手柄。

2、吊装时应保持风机盘管机组水平安装以保证冷凝水的顺利排放,接水管为下进上出水,螺纹连接应用生料带以确保密 封。接管时应先从盘管进水一侧接起,并用软管接头,以保护风机盘管水接头部不致扭伤。

3、风机盘管安装时,进出水管管道应设阀门,以调节水量,也可配用电动阀用温控器控制,电器的连接方法应严格按照 风机盘管机组电气连接图连接。

4、与风机盘管风机盘管机组连接的风管与水管的重量不得有风机盘管机组本身单独承受。

5、通电运行前必须先清洗风机盘管机组,确保风机,水管及管路内无异物。

6、通水使用时必须打开风机盘管机组放弃阀,排清管内空气,待有水流出时在关闭放气阀。

7、风机盘管机组使用冷水温度不低于5度,热水温度不低于80度,要求水质干净,尽量使用软质水。

8、根据使用现场情况定期清洗中央空调风机盘管过滤网及表冷器。

9、风机盘管机组停用时,冬季须注意防冻,以防管子冻裂。

求四管制风机盘管接线原理图,要几根线到温控器,分别的作用,谢谢了

风机盘管机空调的机关知识:

风机盘管机组作为半集中式空调系统的末端装置,其工程应用非常广泛.从总体上看,目前国内的风机盘管在名义供冷量、噪音、电机输入功率等项指标上,已接近于或优于国外产品,而风量则普遍低于国外同型号产品.但是,真正影响空调效果的,并不只是这些参数的绝对值大小,还取决于这些参数之间的配匹是否合理.因为我国的行业标准?中,对供冷量、噪声、输入功率等都有严格规定,因而形成了国产风机盘管高冷、低噪、小风量的总体特点,而风量与冷量的搭配(焓差)则不合理,这给选型工作的合理性和经济性带来问题.

2目前风机盘管选型中常见的问题

2.1按冷负荷选型的弊端

按空调房间的最大冷负荷选用风机盘管是空调系统设计中常见的做法,其目的是保证高峰负荷时的房间温度.而实际上空调房间运行的绝大部分时间都不会处于高峰负荷,使供冷量过剩,而切换到中、低档运行以降低冷量输出,从而维持房间的

热平衡.可见机组实际输出冷量取决于空调负荷的变化,与机组的名义供冷量关系不大.故供冷量只是实现空调的必要条件,但不能决定空调的使用效果.评价空调效果好坏,一是房间平均温度与设定温度的接近程度;二是室温分布(梯度)和变化(波

动)幅度.送风温差越大,换气次数越少,室温梯度和波动幅度也越大,故送风温差和换气次数才是影响空调精度和舒适性的主要因素.文献

[2]中明确规定了不同精度空调房间的最大送风温差和最

低换气次数.空调精度越高,要求送风温差越小、换气次数越多.可见按最大冷负荷选型,仅满足高峰负荷时的房间温度是不够的,还需满足适当的送风温差和换气次数,才能保证房间的舒适性要求.

2.2不能保证足够的送风量

因送风温差、换气次数是决定空调精度和舒适性的主要因素,故保证足够的风量是实现预期空调效果的先决条件.这里所说的风量是指机组使用时的实际送风量,而不是产品样本中的名义风量(GB/T 19232-2003规定:名义风量须在盘管不通水、空气14—27℃,风机转速为高档,对低静压机组不带风口和过滤器等出口静压为12Pa测得的风量值).而实际使用中,暗装机组因要加进、回风格栅、过滤器和短风管,加上盘管表面凝水、积尘、滤网堵塞等诸多因素影响,会导致风阻增大、风量下降,使得实际风量远低于名义风量(笔者通过大量实验证明:一般低l5—25%).由于风量的明显减少,影响空调效果,主要带来以下问题:

1)换气次数少;

2)送风速度低,影响送风射流射程;

3)送风温度低,影响空调舒适度和可能造成送风格栅结露等.

另一方面,对于风机盘管机组本身而言,风量的下降直接影响盘管的换热效果,使盘管的制冷量下降,这样就会形成机组的实际性能(风量、冷量)都要低于名义值的不合理现象.因此,

产品样本上的名义风量、冷量只能作为选型时的参考,而不能作为选型的依据.加大风量不仅能增加换气次数、降低送风温差、改善空调效果,而且由于冷量也会提高,可相应地缩小机组的体积.故提高风量是风机盘管的发展方向之一.当然,风量的

提高也要受空调区域允许风速的制约.另一方面,为控制送风温差,冷量与风量之间应保持适当的匹配关系.全冷量与风量(质量流量)之比就是盘管进出口空气的焓差,它决定了机组供

冷能力和送风温差的大小.从控制送风温差角度,焓差过高不利,而国内的风机盘管的焓差和送风温差普遍偏高.按GB/T 19232-2003规定的名义参数计算,焓差为15.88k.1/kg,送风温差约为l2℃.若按风量下降20%计算,实际的焓差将超过19.85kJ/kg,实际的送风温差会高达l5℃,显然已超出文献[2]中规定的允许送风温差(6_-lO℃),也就无法保证空调精度和舒适性要求.

2.3忽略风系统的阻力计算

一般地风机盘管空调系统的风系统规模较小,构成简单,阻力不大,约在l5—5OPa范围内,但仅仅这一点阻力就足以对风机盘管系统的实际送风量有至关重要的影响.风机盘管分为低静压机组和高静压机组两类,在GB/T 19232-2003中,对于低静压机组,带风口和过滤器等出口静压为OPa,不带风口和过滤器等出口静压为12Pa,也就是说,风口及过滤器等构成的阻力为12Pa.而美国空调与制冷学会标准《房间风机盘管空调器》hRI 440—84中明确规定:出厂时不带送、回风格栅或过滤器的风机盘管,应在12.4Pa机外静压下测试风量u.这一规定正是为了保证实际风量与名义风量相符.而我国大气含尘量较高,滤网易堵塞,理应机外静压比12.4Pa高,相比之下,我国的行业标准中规定的测试条件合理性有待商榷.以客房中卧式暗装、吊顶回风FCU为例,附加阻力至少应包括回风格栅、回风滤网、送风短管及送风格栅阻力.若回风风速为1.Om/s,送风风速为1.5 m/s,经计算此时机外阻力为16Pa,若选用低静压机组肯定也会造成风量下降,此例在工程应用中应属于附加阻力较小的一例,对风量影响尚且如此,可见FCU风系统附加阻力不可忽视.再者,对于高静压机组,若不经过阻力计算,而是认为选用一个高静压机组就能满足要求的做法也是不合理的.

再举一例,图l为某办公楼安装于吊顶内的卧式暗装FCU及相应的风系统,FCU的名义风量为750 m/h,散流器喉部风速2.5 m/s,回风风速1.5 m/s,经计算知FCU本体之外总阻力约为61Pa,其中散流器、回风口滤网阻力占总阻力的80%.此时即便用机外静压30Pa或50Pa的高静压型FCU,风量也会下降15%左右.因此,在具体工程中笼统地提出高静压要求和认为只要用高静压机组就不必进行相关风系统分析的做法是不可取的.

3风机盘管机组改进设计的途径

3.1保证风量的“名”“实”相符

造成机组风量“名”“实”不符的根本原因就在于:

1)湿工况下翅片管表面的水膜和水滴大大地增加了空气的流动阻力,这是主要原因;

2)名义测试工况与实际使用工况不同.因此,解决风

量的“名”“实”不符问题,设计时可从以下几方面入手:

(1)盘管排数的选择

目前国内风机盘管多用9.53mrn管径的三排盘管,这种结构型式的盘管空气阻力较大.根据大量的盘管试验结果表明:相同结构参数的表冷器排数由三排减至二排,空气阻力约降30%t圳,这样在机组输入功率不变的条件下增加风量,以此来解决机组名义风量与实际风量相差太大的问题,而且又保证达到标准规定的供冷量要求.其理论依据是:虽然盘管由三排减至二排,传热面积减少,但盘管的空气阻力下降,风量明显增加使盘管传热性能增强的原理.并且2排管风机盘管省料、节能,多数场合使用效果要优于3排管机组,经济效益显著.

(2)翅片间距的确定

翅片间距的大小是影响风机盘管传热性能和空气阻力的主要因素之一.由理论分析和实验结论可知,翅片间距对风机盘管传热性能的影响是很复杂的.一般说来,换热系数会随着间距的增大而增大,而阻力则会随着间距的增加而减小.但是,当翅片间距变小时,单位体积的换热面积增加.因此,虽然换热系数变小了,但换热量却有可能是增加的.因此,合理确定翅片间距的大小使得换热量相同时空气的阻力最小,即单位阻力换热量最大应是优化的翅片间距.实验研究结果表明lJ 0J:对于水冷式盘管,在常用的翅片间距范围内,3.3mm左右较好.

(3)翅片形状和表面亲水处理

盘管在供冷工况时,对空气的处理是一个降焓析湿过程,在盘管翅片的表面会不断形成水珠,大部分水珠在重力作用下,沿着翅片由上往下流淌至凝结水盘,也有一部分挂贴在翅片表面,这部分水珠使得盘管的阻力增大,从而减少了出风量.对于

相同规格的盘管来说,翅片的析水速度与翅片的形状有关,同时也与翅片表面是否做亲水处理有关.有实验数据表明:相同情况下,湿/干工况风量比由条缝型翅片的75%提高到无缝型翅片的90%;由翅片表面未做亲水处理的88%提高到亲水处理的99%t制,可见,翅片的形状和表面亲水处理对机组的出风量有重要影响.

3.2保证机外静压和风量

因盘管(特别是暗装机组)在使用中风量会有大幅度衰减,因此为克服送风阻力必须具备一定的机外静压,以保证所需的风量.为满足用户的不同使用要求,国外厂家提供有低噪声、标准型、高静压三种机型供用户选择.低噪声机组的机外静压一般低于lOPa:标准型机组为15—25Pa;高静压机组高达30—5oPa.一般空调场合宜使用标准型机组,高精度及大面积房间则应考虑选用高静压机组,低噪声机组一般仅用于对噪声水平要求严格的

场合,如高星级饭店中的豪华客房.因此,在选用国产暗装风盘管时,建议选择机外静压不低于20Pa的产品,当用散流器送风且回风带滤网时,FCU的机外余压不宜小于50Pa,方可取得较好的使用效果,当然,生产厂家最好在产品样本上附上机组的风量一机外静压曲线,以方便于机组选型时参考;并且应生产高低不同的机外静压机型以供不同的使用场合选用.

3.3提供多样化焓差的机组

按照我国行业标准,对于某一型号的机组只能提供单一焓差(因供冷量和风量一定),并且焓差偏高,使得机组送风温差偏大,用在高精度、要求严格的空调场合还必须取一定的补救措施,比如可用改变新风参数来进行调节.而国外的风机盘管具有多种焓差,一般会提供2排管和3排管两种不同冷量的盘管,分别配上低噪声、标准型或高静压三种不同风量的风机,形成名义风量相同,但实际风量、冷量、焓差都不相同的6种机型,可以满

足不同地区、不同围护结构、不同精度要求空调房间的使用要求.因此,国内生产厂家也应从实际使用情况出发,研制出多样化焓差的新型机组,以满足不同空调场合的灵活选用.

3.4合理的水路流程目前,多数厂家风机盘管的水路流程用单一的3进3出的接法.合理的水路设计应满足:

1)较高的水流速,以保证较高的换热系数;

2)较低的水阻力,保证水泵较低的能耗,尤其是高层建筑

空调系统:

3)水和空气的逆交叉流动,以保证最大的换热温差.然而实际水通路设计中,增强换热系数往往会带来水阻力的增加.因此,优化的水通路设计应做到:

1)不同长度的盘管应用不同的水路设计,如大长度盘管用多路并联、加大过水截面积,既能保证换热量又能有效地降低水阻力;

2)保证进、回水之间5℃温差,以保证合适的流量、合适的水流速,从而保证换热性能,同时又不会使水阻过大.3)不同使用工况的盘管,其水路应区别设计.若进风参数不同,空气处理过程必然不同,因此,水通路设计应有所不同,以保证冷量、

水阻力的合理.4)为冬季防冻放水及防止管内空气滞留,水路应设计成由下至上的单向行程比较合理、可行.

3.5提供全冷量焓效率和显冷量效率的计算公式

由于样本上提供的风量、冷量是名义工况下测定的,而在实际使用中,名义风量和名义冷量一般都不会出现,依此作为选型依据是不合理的.因此,厂家在产品样本上除了标明名义风量、名义冷量外,还应提供每一种型号机组的全冷量焓效率和显冷量效率的计算公式,以供设计人员选型时根据不同的设计工况进行设计风量、设计冷量的计算,以便合理选用风机盘管,这样既保证满意的空调效果,又能节省初投资和运行能耗,一举两得,应是业内人士共同追求的目标.

4结论

4.1风机盘管的实际送风量是保证空调效果理想的关键,产品设计时应考虑各参数的合理配匹,另一方面,可从盘管排数、翅片间距、翅片形式和表面做亲水处理等方面考虑在湿工况下提高机组的送风量,减少风侧阻力.

4.2风机盘管的风系统设计时应进行阻力计算和校核,使之与配匹风机相吻合,认为FCU风系统规模小而不必进行风阻计算是不妥的.

4.3生产厂家应提供多样化焓差、多种机外静压的机型,以满足不同的使用场合;还应根据盘管不同长度、不同使用工况设计成不同的水路流程,以保证水侧较高的换热系数和较低的水阻力.

4.4产品样本上最好应附上机组的风量一机外静压曲线,以及全冷量焓效率和显冷量效率的计算公式,以便于设计人员在机组选型时根据不同的设计工况合理选用,既保证空调使用效果,又节省初投资和运行费用.

多联机空调和风机盘管系统哪个比较好

5根线到温控器。

最常见的风盘:进水管、出水管、很细的溢流管。

四管制风盘:进水管、出水管、蒸汽(或者氟)进管、蒸汽(或者氟)出管、很细的溢流管。

原理图:

风机盘管位于吊顶上,阀门位于吊顶上,交流220v电源布线走吊顶上;温度控制面板置于墙面FL+1.4M。所以基于这样的条件下,接线如下:

首先是220v的两根线,火线与零线,直接进入温度控制面板;

地线接至风机盘管,零线接至风机盘管和电动阀一个端子;

温度控制面板高,中,低三速三根线走向风机盘管对应端子;

温度控制面板阀门开阀线(常闭阀门)一根接向阀门,阀门另一个端子接零线。由此电气回路接线完毕。

扩展资料:

在欧洲绝大多情况是温控器是壁挂炉必配件,两者一配一的同时交付用户的,而且配备的温控器大多是智能型温控器。而在国内,已安装在运行和正在安装调试准备投入使用的壁挂炉近95%的没有先行配备任何形式的简易或智能型的温控器。

而房间暖系统中配备温控器尤其是智能温控器,是节能暖综合体系中一个极为突出的最重要的环节。

方便:每天自动定时提前或延后开关调节壁挂炉,免去人工操作,对上班族家庭最有必要;

舒适:每天早午晚夜各时段室温自动高低调整,免去早晨起床和下班回家后等待房间升温而挨冻的尴尬;

省气:改落后粗放的水温控制为先进准确的室温控制,加上分时段定室温按需运行,不用敞开的昼夜烧气暖;

放心:室温过低时强制启动壁挂炉,仅需极少的燃气,便可安全的进行居室防冻保护。

百度百科-温控器

百度百科-卧式暗装风机盘管机组

各有优缺点:

多联机空调系统运行节能性比风机盘管加冷水机要好一些,冬天防冻性能好,整体故障率偏高;

“风机盘管+冷水机组”冬天防冻性能差,对水质要求高。

两者的初投资差不多。