风机盘管的水管管径_风机盘管及空调水的计算方法
1.空调冷热水系统的设计步骤知识点分析?
2.空调的风机盘管接水路的管径是根据什么来确定,还是统一大小呢
3.风机盘管的风量与制冷面积的换算如:100平米
4.中央空调水系统管径计算方法
5.通风风管怎样计算工程量
6.怎么确定风机盘管干管及各供回水支管的管径
空调水系统包括:空调冷冻水系统、空调冷却水系统和空调冷凝水系统。空调冷冻水是由冷水机组供应,输送到室内末端设备如风机盘管等,最后回到冷水机组的蒸发器的循环过程。
风机盘管吹水:指风机盘管内冷冻水的温度低于室内空气露点温度产生大量冷凝水而溢出凝水盘的现象。
流程:空调冷却水系统是由冷却塔供应冷却水到冷水机组的冷凝器,最后回到冷却塔的循环过程(风冷机组无冷却水系统)。空调冷凝水就是排到各自的卫生间或者由给排水管道集中排放。空调水系统就是这么个简单的流程。
空调冷热水系统的设计步骤知识点分析?
进水和回水是根据水流方向来定义的,水流从中央空调蒸发器出来到室内盘管或空调箱这段管道叫出水管,从空调箱或风机盘管出来回到中央空调蒸发器的这段管叫回水管,故名思义进水和回水就很简单了。
空调管的“进水”和“回水”是相对于描述对象而言的;
比如,对风机盘管来说,下进上出,下面的一个管口接进水管,上面的一个管口接出水管。
二对于与之相连的冷水机组来说,则正好反过来,风机盘管的进水管是冷水机组的出水管。
扩展资料:
价格便宜、耗电量低,在酷暑难耐的盛夏,这两个优点,足以成为“水空调”代替分离式空调的理由。“水空调”是一种利用地下水来降低室内温度的空调。它的原理很简单,就是把水从井里抽出来,然后用风扇把水的冷气吹出来,使用过后的水会从另一个管子直接排到下水道里。
典型中央空调机组主要由冷冻水循环系统、冷却水循环系统及主机三部分组成:
1、冷冻水循环系统
该部分由冷冻泵、室内风机及冷冻水管道等组成。从主机蒸发器流出的低温冷冻水由冷冻泵加压送入冷冻水管道(出水),进入室内进行热交换,带走房间内的热量,最后回到主机蒸发器(回水)。室内风机用于将空气吹过冷冻水管道,降低空气温度,加速室内热交换。
2、 冷却水循环部分
该部分由冷却泵、冷却水管道、冷却水塔等组成。冷冻水循环系统进行室内热交换的同时,必将带走室内大量的热能。该热能通过主机内的冷媒传递给冷却水,使冷却水温度升高。冷却泵将升温后的冷却水压入冷却水塔(出水),使之与大气进行热交换,降低温度后再送回主机冷凝器(回水)。
3、 主机
主机部分由压缩机、蒸发器、冷凝器及冷媒(制冷剂)等组成,其工作循环过程如下:
首先低压气态冷媒被压缩机加压进入冷凝器并逐渐冷凝成高压液体。在冷凝过程中冷媒会释放出大量热能,这部分热能被冷凝器中的冷却水吸收并送到室外的冷却塔上,最终释放到大气中去。
随后冷凝器中的高压液态冷媒在流经蒸发器前的节流降压装置时,因为压力的突变而气化,形成气液混合物进入蒸发器。冷媒在蒸发器中不断气化,同时会吸收冷冻水中的热量使冷冻水达到较低温度。最后,蒸发器中气化后的冷媒又变成了低压气体,重新进入了压缩机,如此循环往复。
参考资料来源:百度百科-中央空调水系统
空调的风机盘管接水路的管径是根据什么来确定,还是统一大小呢
一、选择冷|热水系统的形式
1、空调水系统的形式
A、双管制和四管制系统
对任一空调末端装置,只设一根供水管和一根回水管,夏季供冷水、冬季供热水,这样的冷(热)水系统,称为双管制系统;
对任一空调末端装置,设有两根供水管和两根回水管,其中一组供回水管用于冷水系统,另外一组用于热水系统,这样的冷(热)水系统,称为四管制系统。
B、闭式和开式系统
闭式系统的水循环管路中无开口处,而开式系统的末端水管是与大气相通的。开式系统使用的水泵,除要克服管路阻力损失外,还需具有把水提升到某一高度的压头,因此,要求有较大扬程,相应的能耗也较大。闭式系统管路系统不与大气相通,水泵所需扬程仅需克服管路阻力损失,不需涉及将水位提高所需的位置压头,因此,所需扬程较开式小,相应的能耗也小,并且管路和设备受空气腐蚀的可能性也小。
C、异程式和同程式系统
风机盘管设在各空调房间内,按照起并联于供水干管和回水干管间的各机组的循环管路总长是否相等,可分为异程式和同程式系统。
异程式管路系统配置简单,省管材,但各并联环路管长不等,因而阻力不等,流量分配难以均衡,增加了初次调整的难度。同程式各并联环路管长相等,阻力大致相等,流量分配也较均衡,可减少初次调整的难度,但初投资较高。
D、定水量和变水量系统
定水量系统中的系统水量是不变的。它通过改变末端装置的供水量来调节空调房间的负荷变化。各空调末端装置或各分区水量,用手设在空调房内感温器控制的电动三通阀进行调节。
变水量系统则保持空调水系统供、回水的温度不变,通过改变水系统的水流量来适应空调负荷的变化,这种系统各空调末端装置的水流量收设在室内的感温器控制的电动二通阀进行调节,目前用变水量调节方式的较多。
因为变水量系统负荷处于变化状态,建议在中央机房内的供回水管之间设置旁通管,并设置压差电动调节阀。
此外,无论是定水量还是变水量系统,空调末端设置除设自动控制的电动阀外,为了维修方便,前后两边必须设置截止阀,或增加旁通装置。
E、单式水泵系统和复式水泵系统
以中央机房的供回水集管为界,冷热源侧和负荷侧共用水泵的,
叫单式水泵系统;冷热源侧和负荷侧分别设置水泵的,叫复式水泵系统,也叫二次泵系统。
2、空调水系统形式的选择与分区
A、一般建筑物的舒适性中央空调,其冷(热)水系统宜用单式水泵、变水量调节、双管制系统,并尽可能为同程式或分区同程式。
B、舒适性要求很高的建筑物可用四管制系统。
C、高层建筑,特别是超高层建筑,在每层供水半径不大时,常用竖向总管同程式,水平异程管式。
D、如果全系统只设置一台空调主机时,宜用定水量系统;设置多台主机时,则考虑用变水量系统。
E、大型建筑中一般情况宜用单式水泵系统,但若各分区负荷变化规律不一,或各分区供水环路阻力相差大,或使用功能及运行时间不一,或供水作用半径相差悬殊等情况,均宜用复式水泵系统。
二、冷|热水系统水管管径的确定
空调水系统的管材有镀锌钢管和无缝钢管。当管径DN≤100mm时,可用镀锌钢管,其规格用公称直径DN表示;当管径DN>100mm时,可用无缝钢管,其规格用外径*壁厚表示。常用钢管规格如下表(直径、壁厚单位mm,质量单位kg/m):
常用钢管规格表
注明:镀锌管比不镀锌钢管重3~6%左右。
管径计算公式一
dn=1.13 * 对应管段水流量(立方米/秒)除以水流速(米/秒)的商的平方根;
管径计算公式二
dn=0.48 * 对应管段冷量(冷吨)的平方根。
参考表格如下:
管内水的最大允许水流速
冷冻水管速算表
水系统的管径和单位长度阻力损失
三、供、回水集管的设计
供水集管又称为分水器(分水缸),回水集管又称为集水器(回水缸),
它们都是一段水平安装的大管径钢管。各台冷水机组(或热水器)生产的冷(热)水送入分水器,再经分水器,向各子系统或各区分别供水;各子系统或各区的空调回水,先回流到集水器,然后再由水泵送入各冷水机组(或热水器)。分水器和集水器上的各管路均应设置调节阀和压力表,底部应设排污管和排污阀(一般选用DN40)。
分水器和集水器的管径,按其中水的流速为0.5~0.8m/s的范围内确定。分、集水器的管长由所需连接的管接头个数、管径及间距确定。两相邻接头中心线间距宜为两管外径+120mm;两边管接头中心距管端面宜为外径+60mm。
四、水头损失计算
流体在管道内运行阻力损失包括两部分,即沿程阻力损失和局部阻力损失。
管路的水头损失(mH2O)=各管段沿程阻力损失之和(mH2O)
+各管段局部阻力损失之和(mH2O)
1、沿程阻力计算方法
A、近似估算
P(mH2O)= 0.025*(L/d)*V2/2g
L:管路长度,m;
d:管道直径,m;
V:管道内水流速,m/s.
B、 按水力坡降计算
P(mH2O)= I * L mH2O
I:水力坡度,即单位管长的水力损失mH2O /m;
L:管路长度,m。
对旧钢管和铸铁管的水力坡度:
当V≥1.2m/s时,I=0.00107*V2/d1.3 mH2O /m
当V<1.2m/s时,I=0.000912*V2/d1.3 *(1+0.867/V)0.3 mH2O /m
d:管道计算内径,m;
V:管道内水流速,m/s.
2、局部阻力计算方法
A、常用计算公式
P(mH2O)= 局部阻力系数(可查表)* V2/2g
V:管道内水流速,m/s.
B、 按水力坡降计算
P(mH2O)= I * L mH2O
I:水力坡度,即单位管长的水力损失mH2O /m;
L:局部阻力当量长度,m。
各种局部阻力损失折合当量长度表
五、冷|热水泵的配置与选择
每台空调主机至少应该配置一台水泵,一般要考虑备用泵,以备维修之用。一般空调水系统的水泵与机组连接方式是用压入式(对机组而言),只有在水泵的吸入段有足够的压头才能防止水汽化。水泵通常选用比转数N在30~150的离心式清水泵。
1、水泵流量的确定
水泵的流量计算式如下:
V=β1*V1m3/s
式中:β1------流量储备系数,当水泵单台工作时,β1=1.1,当两台并联工作时,β1=1.2;
V1------冷水机组额定流量,m3/s。
2、水泵扬程的确定
水泵的扬程计算式如下:
H=β2*HmaxmH2O
式中:β2------扬程储备系数,一般β2=1.1;
Hmax------水泵所承担的供回水管网最不利环路的水压降,mH2O。
最不利环路的总水压降Hmax可按下式计算:
Hmax=P1+P2+P3mH2O
式中:P1------冷水机组蒸发器的水压降,mH2O,可从产品样本中查知。(参考换算1KPa=0.1mH2O)
P2------环路中并联的各台空调末端装置中最大的水压降,mH2O,可从产品样本中查知。
P3------环路中各种管件的水压降与沿程压降之和,mH2O,可从产品样本中查知。
在估算时,可大致取每100米管长的沿程损失为5mH2O。
这样,最不利环路的总长(一般为供回水管长度之
和为L,则最不利环路的水压降可按下式估算:
Hmax=P1+P2+0.05(1+K)*LmH2O
式中:P1、P2同上
K为最不利环路中局部阻力当量长度总和与该环路管道总长的比值。当最不利环路较短时,取K=0.2~0.3;当最不利环路较长时,取K=0.4~0.6。
六、膨胀水箱的配置与选择
闭式水系统,为容纳水系统内水的热胀冷缩的变化和补充系统的渗漏水,应该设置膨胀水箱。膨胀水箱一般设置在高出水系统最高点的2~3米处,且一般连接在水泵的吸入侧。膨胀水管应该具备通气管、溢流管、信号管、排污管、膨胀管、补水管、循环管总共7个管口。
空调水系统的膨胀水量V可按下式计算:
V=(1/ρ1-1/ρ2)*V’L
式中:ρ1------系统运行前水的密度,kg/l;
ρ2------系统运行后水的密度,kg/l;
V’------系统中水总容量,l;V’=VF*F
F------为建筑总面积,m2;
VF------水容量概算值,L/m2
参考用表:
水的密度
水系统中水容量概算值VF(L/m2)
更多关于工程/服务/购类的标书代写制作,提升中标率,您可以点击底部客服免费咨询:s://bid.lcyff/#/?source=bdzd
风机盘管的风量与制冷面积的换算如:100平米
风机盘管给、排水管径是根据:1、风机盘管(制冷量大小)决定末端管径。2、一个支路上有多少个风机盘管和距给水总管的远近来决定支管的管径。3、由各支管的流量决定总管的管径。4、同时也要考虑线路的长短,弯角大小和多少的因素
中央空调水系统管径计算方法
风机盘管机空调的机关知识:
风机盘管机组作为半集中式空调系统的末端装置,其工程应用非常广泛.从总体上看,目前国内的风机盘管在名义供冷量、噪音、电机输入功率等项指标上,已接近于或优于国外产品,而风量则普遍低于国外同型号产品.但是,真正影响空调效果的,并不只是这些参数的绝对值大小,还取决于这些参数之间的配匹是否合理.因为我国的行业标准?中,对供冷量、噪声、输入功率等都有严格规定,因而形成了国产风机盘管高冷、低噪、小风量的总体特点,而风量与冷量的搭配(焓差)则不合理,这给选型工作的合理性和经济性带来问题.
2目前风机盘管选型中常见的问题
2.1按冷负荷选型的弊端
按空调房间的最大冷负荷选用风机盘管是空调系统设计中常见的做法,其目的是保证高峰负荷时的房间温度.而实际上空调房间运行的绝大部分时间都不会处于高峰负荷,使供冷量过剩,而切换到中、低档运行以降低冷量输出,从而维持房间的
热平衡.可见机组实际输出冷量取决于空调负荷的变化,与机组的名义供冷量关系不大.故供冷量只是实现空调的必要条件,但不能决定空调的使用效果.评价空调效果好坏,一是房间平均温度与设定温度的接近程度;二是室温分布(梯度)和变化(波
动)幅度.送风温差越大,换气次数越少,室温梯度和波动幅度也越大,故送风温差和换气次数才是影响空调精度和舒适性的主要因素.文献
[2]中明确规定了不同精度空调房间的最大送风温差和最
低换气次数.空调精度越高,要求送风温差越小、换气次数越多.可见按最大冷负荷选型,仅满足高峰负荷时的房间温度是不够的,还需满足适当的送风温差和换气次数,才能保证房间的舒适性要求.
2.2不能保证足够的送风量
因送风温差、换气次数是决定空调精度和舒适性的主要因素,故保证足够的风量是实现预期空调效果的先决条件.这里所说的风量是指机组使用时的实际送风量,而不是产品样本中的名义风量(GB/T 19232-2003规定:名义风量须在盘管不通水、空气14—27℃,风机转速为高档,对低静压机组不带风口和过滤器等出口静压为12Pa测得的风量值).而实际使用中,暗装机组因要加进、回风格栅、过滤器和短风管,加上盘管表面凝水、积尘、滤网堵塞等诸多因素影响,会导致风阻增大、风量下降,使得实际风量远低于名义风量(笔者通过大量实验证明:一般低l5—25%).由于风量的明显减少,影响空调效果,主要带来以下问题:
1)换气次数少;
2)送风速度低,影响送风射流射程;
3)送风温度低,影响空调舒适度和可能造成送风格栅结露等.
另一方面,对于风机盘管机组本身而言,风量的下降直接影响盘管的换热效果,使盘管的制冷量下降,这样就会形成机组的实际性能(风量、冷量)都要低于名义值的不合理现象.因此,
产品样本上的名义风量、冷量只能作为选型时的参考,而不能作为选型的依据.加大风量不仅能增加换气次数、降低送风温差、改善空调效果,而且由于冷量也会提高,可相应地缩小机组的体积.故提高风量是风机盘管的发展方向之一.当然,风量的
提高也要受空调区域允许风速的制约.另一方面,为控制送风温差,冷量与风量之间应保持适当的匹配关系.全冷量与风量(质量流量)之比就是盘管进出口空气的焓差,它决定了机组供
冷能力和送风温差的大小.从控制送风温差角度,焓差过高不利,而国内的风机盘管的焓差和送风温差普遍偏高.按GB/T 19232-2003规定的名义参数计算,焓差为15.88k.1/kg,送风温差约为l2℃.若按风量下降20%计算,实际的焓差将超过19.85kJ/kg,实际的送风温差会高达l5℃,显然已超出文献[2]中规定的允许送风温差(6_-lO℃),也就无法保证空调精度和舒适性要求.
2.3忽略风系统的阻力计算
一般地风机盘管空调系统的风系统规模较小,构成简单,阻力不大,约在l5—5OPa范围内,但仅仅这一点阻力就足以对风机盘管系统的实际送风量有至关重要的影响.风机盘管分为低静压机组和高静压机组两类,在GB/T 19232-2003中,对于低静压机组,带风口和过滤器等出口静压为OPa,不带风口和过滤器等出口静压为12Pa,也就是说,风口及过滤器等构成的阻力为12Pa.而美国空调与制冷学会标准《房间风机盘管空调器》hRI 440—84中明确规定:出厂时不带送、回风格栅或过滤器的风机盘管,应在12.4Pa机外静压下测试风量u.这一规定正是为了保证实际风量与名义风量相符.而我国大气含尘量较高,滤网易堵塞,理应机外静压比12.4Pa高,相比之下,我国的行业标准中规定的测试条件合理性有待商榷.以客房中卧式暗装、吊顶回风FCU为例,附加阻力至少应包括回风格栅、回风滤网、送风短管及送风格栅阻力.若回风风速为1.Om/s,送风风速为1.5 m/s,经计算此时机外阻力为16Pa,若选用低静压机组肯定也会造成风量下降,此例在工程应用中应属于附加阻力较小的一例,对风量影响尚且如此,可见FCU风系统附加阻力不可忽视.再者,对于高静压机组,若不经过阻力计算,而是认为选用一个高静压机组就能满足要求的做法也是不合理的.
再举一例,图l为某办公楼安装于吊顶内的卧式暗装FCU及相应的风系统,FCU的名义风量为750 m/h,散流器喉部风速2.5 m/s,回风风速1.5 m/s,经计算知FCU本体之外总阻力约为61Pa,其中散流器、回风口滤网阻力占总阻力的80%.此时即便用机外静压30Pa或50Pa的高静压型FCU,风量也会下降15%左右.因此,在具体工程中笼统地提出高静压要求和认为只要用高静压机组就不必进行相关风系统分析的做法是不可取的.
3风机盘管机组改进设计的途径
3.1保证风量的“名”“实”相符
造成机组风量“名”“实”不符的根本原因就在于:
1)湿工况下翅片管表面的水膜和水滴大大地增加了空气的流动阻力,这是主要原因;
2)名义测试工况与实际使用工况不同.因此,解决风
量的“名”“实”不符问题,设计时可从以下几方面入手:
(1)盘管排数的选择
目前国内风机盘管多用9.53mrn管径的三排盘管,这种结构型式的盘管空气阻力较大.根据大量的盘管试验结果表明:相同结构参数的表冷器排数由三排减至二排,空气阻力约降30%t圳,这样在机组输入功率不变的条件下增加风量,以此来解决机组名义风量与实际风量相差太大的问题,而且又保证达到标准规定的供冷量要求.其理论依据是:虽然盘管由三排减至二排,传热面积减少,但盘管的空气阻力下降,风量明显增加使盘管传热性能增强的原理.并且2排管风机盘管省料、节能,多数场合使用效果要优于3排管机组,经济效益显著.
(2)翅片间距的确定
翅片间距的大小是影响风机盘管传热性能和空气阻力的主要因素之一.由理论分析和实验结论可知,翅片间距对风机盘管传热性能的影响是很复杂的.一般说来,换热系数会随着间距的增大而增大,而阻力则会随着间距的增加而减小.但是,当翅片间距变小时,单位体积的换热面积增加.因此,虽然换热系数变小了,但换热量却有可能是增加的.因此,合理确定翅片间距的大小使得换热量相同时空气的阻力最小,即单位阻力换热量最大应是优化的翅片间距.实验研究结果表明lJ 0J:对于水冷式盘管,在常用的翅片间距范围内,3.3mm左右较好.
(3)翅片形状和表面亲水处理
盘管在供冷工况时,对空气的处理是一个降焓析湿过程,在盘管翅片的表面会不断形成水珠,大部分水珠在重力作用下,沿着翅片由上往下流淌至凝结水盘,也有一部分挂贴在翅片表面,这部分水珠使得盘管的阻力增大,从而减少了出风量.对于
相同规格的盘管来说,翅片的析水速度与翅片的形状有关,同时也与翅片表面是否做亲水处理有关.有实验数据表明:相同情况下,湿/干工况风量比由条缝型翅片的75%提高到无缝型翅片的90%;由翅片表面未做亲水处理的88%提高到亲水处理的99%t制,可见,翅片的形状和表面亲水处理对机组的出风量有重要影响.
3.2保证机外静压和风量
因盘管(特别是暗装机组)在使用中风量会有大幅度衰减,因此为克服送风阻力必须具备一定的机外静压,以保证所需的风量.为满足用户的不同使用要求,国外厂家提供有低噪声、标准型、高静压三种机型供用户选择.低噪声机组的机外静压一般低于lOPa:标准型机组为15—25Pa;高静压机组高达30—5oPa.一般空调场合宜使用标准型机组,高精度及大面积房间则应考虑选用高静压机组,低噪声机组一般仅用于对噪声水平要求严格的
场合,如高星级饭店中的豪华客房.因此,在选用国产暗装风盘管时,建议选择机外静压不低于20Pa的产品,当用散流器送风且回风带滤网时,FCU的机外余压不宜小于50Pa,方可取得较好的使用效果,当然,生产厂家最好在产品样本上附上机组的风量一机外静压曲线,以方便于机组选型时参考;并且应生产高低不同的机外静压机型以供不同的使用场合选用.
3.3提供多样化焓差的机组
按照我国行业标准,对于某一型号的机组只能提供单一焓差(因供冷量和风量一定),并且焓差偏高,使得机组送风温差偏大,用在高精度、要求严格的空调场合还必须取一定的补救措施,比如可用改变新风参数来进行调节.而国外的风机盘管具有多种焓差,一般会提供2排管和3排管两种不同冷量的盘管,分别配上低噪声、标准型或高静压三种不同风量的风机,形成名义风量相同,但实际风量、冷量、焓差都不相同的6种机型,可以满
足不同地区、不同围护结构、不同精度要求空调房间的使用要求.因此,国内生产厂家也应从实际使用情况出发,研制出多样化焓差的新型机组,以满足不同空调场合的灵活选用.
3.4合理的水路流程目前,多数厂家风机盘管的水路流程用单一的3进3出的接法.合理的水路设计应满足:
1)较高的水流速,以保证较高的换热系数;
2)较低的水阻力,保证水泵较低的能耗,尤其是高层建筑
空调系统:
3)水和空气的逆交叉流动,以保证最大的换热温差.然而实际水通路设计中,增强换热系数往往会带来水阻力的增加.因此,优化的水通路设计应做到:
1)不同长度的盘管应用不同的水路设计,如大长度盘管用多路并联、加大过水截面积,既能保证换热量又能有效地降低水阻力;
2)保证进、回水之间5℃温差,以保证合适的流量、合适的水流速,从而保证换热性能,同时又不会使水阻过大.3)不同使用工况的盘管,其水路应区别设计.若进风参数不同,空气处理过程必然不同,因此,水通路设计应有所不同,以保证冷量、
水阻力的合理.4)为冬季防冻放水及防止管内空气滞留,水路应设计成由下至上的单向行程比较合理、可行.
3.5提供全冷量焓效率和显冷量效率的计算公式
由于样本上提供的风量、冷量是名义工况下测定的,而在实际使用中,名义风量和名义冷量一般都不会出现,依此作为选型依据是不合理的.因此,厂家在产品样本上除了标明名义风量、名义冷量外,还应提供每一种型号机组的全冷量焓效率和显冷量效率的计算公式,以供设计人员选型时根据不同的设计工况进行设计风量、设计冷量的计算,以便合理选用风机盘管,这样既保证满意的空调效果,又能节省初投资和运行能耗,一举两得,应是业内人士共同追求的目标.
4结论
4.1风机盘管的实际送风量是保证空调效果理想的关键,产品设计时应考虑各参数的合理配匹,另一方面,可从盘管排数、翅片间距、翅片形式和表面做亲水处理等方面考虑在湿工况下提高机组的送风量,减少风侧阻力.
4.2风机盘管的风系统设计时应进行阻力计算和校核,使之与配匹风机相吻合,认为FCU风系统规模小而不必进行风阻计算是不妥的.
4.3生产厂家应提供多样化焓差、多种机外静压的机型,以满足不同的使用场合;还应根据盘管不同长度、不同使用工况设计成不同的水路流程,以保证水侧较高的换热系数和较低的水阻力.
4.4产品样本上最好应附上机组的风量一机外静压曲线,以及全冷量焓效率和显冷量效率的计算公式,以便于设计人员在机组选型时根据不同的设计工况合理选用,既保证空调使用效果,又节省初投资和运行费用.
通风风管怎样计算工程量
管径计算公式如下:
Q(L/s):管段内流经的水流量
d(mm):管道内径
v(m/s):定的水流速
目前设计软件都能直接计算出管径,在水系统中,管内水流速一般按推荐值选用经试算确定其管径。
如果是计算出来的就按照600KW*同时使用系数来确定室外机功率,也就是600KW*0.8=480KW,室内末端选型参照一般我选型是按照设备样板打0.8折左右的修正选型,水管管径按所有末端合计的流量、流速、冷量确定。
扩展资料
关于冷凝水管的选择
每1KW的冷负荷每小时产生约0.4~0.8公斤左右的冷凝水,在潜热负荷较高的场合每1kW冷负荷每1h约产生0.8kg。冷凝水通常可以根据机组的冷负荷Q(kW)按下列数据近似选定冷凝水管的公称直径。
风机盘管机组、整体式空调器、组合式空调机组等运行过程中产生的冷凝水,必须及时予以排走。
怎么确定风机盘管干管及各供回水支管的管径
通风管道工程量的计算规则
1、面积按展开计算;周长乘以长度等于面积,例如500*400长1000mm (0.5+0.4)*2*1=1.8平米,异径管通常按照管径比较大的一头计算。
2、风管长度按中心线长为准,但不包括部件所占长度。
3、风管导流片,按图示叶片的面积计算。
4、软管按图示尺寸以平方米计算。
扩展资料风管主要应用在工业及建筑工程中,应用领域主要涉及:电子工业无尘厂房净化系统,医药食品无菌车间净化系统,酒店宾馆、商场医院、工厂及写字楼的中央空调系统,工业污染控制用除尘、排烟、吸油等排风管、工业环境或岗位舒适用送风管、煤矿抽放瓦斯用抽放瓦斯系统、煤矿矿井环境控制用送回风系统...等等;PS:常被、动漫中开发成逃生及潜入专用路线。
按用途区分
1、净化空调系统用风管:镀锌板、不锈钢;(使用中可能出现尘源污染的玻璃钢、复合材料禁用)
2、中央空调系统用风管:镀锌板、彩钢保温板;(可使用玻璃钢、复合材料)
3、环境控制系统用风管:镀锌板、不锈钢;(可使用塑料、玻璃钢、复合材料)
4、工业通风系统用风管:钢板、镀锌板;(丽博通风管.可使用塑料、玻璃钢、复合材料)
注:玻璃钢风管可分有机、无机二种,根据设计规范有消防要求的禁用有机材质;
5、特殊使用场合用风管:矿用涂胶布风筒、矿用塑料通风管;(要求阻燃抗静电矿用安全特性)
百度百科-通风风管
风机盘管支管管径的选择一般是按照风机盘管样本冷冻进、出水的接管管径选择,这个样本上都有,根据你的负荷选型后看样本就可以知道。多为Rc 3/4锥管内螺纹。
干管管径的选择要结合流量和流速综合确定,流量就是该段管道负责各风机盘管流量之和,流速一般是DN25,流速<0.5m/s;DN32,流速在0.5-0.6m/s,具体可见《使用供热空调设计手册》空调水系统一节。
冷凝水也是看样本。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。