扭转弹簧常数_扭转弹簧的微分方程
1.简明材料力学的简明材料力学(第2版)
2.2018-08-24 轴
3.桥梁的固有频率的大体范围
4.成为一名机械工程师需要具备哪些知识?
第1章 绪论
1.1 材料力学的任务
1.2 变形固体的基本设
1.3 外力及其分类
1.4 内力、截面法和应力的概念
1.5 变形与应变
1.6 杆件变形的基本形式
思考题
习题
第2章 拉伸、压缩与剪切
2.1 轴向拉伸与压缩的概念和实例
2.2 直杆轴向拉伸或压缩时横截面上的内力和应力
2.3 直杆轴向拉伸或压缩时斜截面上的应力
2.4 材料拉伸时的力学性能
2.5 材料压缩时的力学性能
2.6 温度和时间对材料力学性能的影响
2.7 失效、安全因数和强度计算
2.8 杆件轴向拉伸或压缩时的变形
2.9 轴向拉伸或压缩的应变能
2.10 拉伸、压缩的超静定问题
2.11 温度应力和装配应力
2.12 应力集中的概念
2.13 剪切和挤压的实用计算
思考题
习题
第3章 扭转
3.1 扭转的概念和实例
3.2 外力偶矩的计算扭矩和扭矩图
3.3 纯剪切
3.4 圆轴扭转时的应力
3.5 圆轴扭转时的变形
3.6 圆柱形密圈螺旋弹簧的应力和变形
3.7 非圆截面杆扭转的概述
3.8 薄壁杆件的自由扭转
思考题
习题
第4章 弯曲内力
4.1 弯曲的概念和实例
4.2 受弯杆件的简化
4.3 剪力和弯矩
4.4 剪力方程和弯矩方程剪力图和弯矩图
4.5 载荷集度、剪力和弯矩问的关系
4.6 平面曲杆的弯曲内力
思考题
习题
第5章 弯曲应力
5.1 纯弯曲
5.2 纯弯曲时的正应力
5.3 横力弯曲时的正应力
5.4 弯曲切应力
5.5 关于弯曲理论的基本设
5.6 提高弯曲强度的措施
思考题
习题
第6章 弯曲变形
6.1 工程中的弯曲变形问题
6.2 挠曲线的微分方程
6.3 用积分法求弯曲变形
6.4 用叠加法求弯曲变形
6.5 简单超静定梁
6.6 减小弯曲变形的一些措施
思考题
习题
第7章 应力和应变分析、强度理论
7.1 应力状态概述
7.2 二向和三向应力状态的实例
7.3 二向应力状态分析——解析法
7.4 二向应力状态分析——图解法
7.5 三向应力状态
7.6 位移与应变分量
7.7 平面应变状态分析
7.8 广义胡克定律
7.9 复杂应力状态下的应变能密度
7.10 强度理论概述
7.11 四种常用强度理论
7.12 莫尔强度理论
7.13 构件含裂纹时的断裂准则
思考题
习题
第8章 组合变形
8.1 组合变形和叠加原理
8.2 拉伸或压缩与弯曲的组合
8.3 偏心压缩和截面核心
8.4 扭转与弯曲的组合
8.5 组合变形的普遍情况
思考题
习题
第9章 压杆稳定
9.1 压杆稳定的概念
9.2 两端铰支细长压杆的临界压力
9.3 其他支座条件下细长压杆的临界压力
9.4 欧拉公式的适用范围经验公式
9.5 压杆的稳定校核
9.6 提高压杆稳定性的措施
9.7 纵横弯曲的概念
思考题
习题
附录I 平面图形的几何性质
I.1 静矩和形心
I.2 惯性矩和惯性半径
I.3 惯性积
I.4 平行移轴公式
I.5 转轴公式主惯性轴
思考题
习题
附录Ⅱ 型钢表
参考文献
习题答案
作者简介
简明材料力学的简明材料力学(第2版)
1.静力学
静力学是力学的一个分支,它主要研究物体在力的作用下处于平衡的规律,以及如何建
立各种力系的平衡条件。
平衡是物体机械运动的特殊形式,严格地说,物体相对于惯性参照系处于静止或作匀速
直线运动的状态,即加速度为零的状态都称为平衡。对于一般工程问题,平衡状态是以
地球为参照系确定的。静力学还研究力系的简化和物体受力分析的基本方法。
静力学的发展简史
从现存的古代建筑,可以推测当时的建筑者已使用了某些由经验得来的力学知识,并且
为了举高和搬运重物,已经能运用一些简单机械(例如杠杆、滑轮和斜面等)。
静力学是从公元前三世纪开始发展,到公元16世纪伽利略奠定动力学基础为止。这期间
经历了西欧奴隶社会后期,封建时期和文艺复兴初期。因农业、建筑业的要求,以及同
贸易发展有关的精密衡量的需要,推动了力学的发展。人们在使用简单的工具和机械的
基础上,逐渐总结出力学的概念和公理。例如,从滑轮和杠杆得出力矩的概念;从斜面
得出力的平行四边形法则等。
阿基米德是使静力学成为一门真正科学的奠基者。在他的关于平面图形的平衡和重心的
著作中,创立了杠杆理论,并且奠定了静力学的主要原理。阿基米德得出的杠杆平衡条
件是:若杠杆两臂的长度同其上的物体的重量成反比,则此二物体必处于平衡状态。阿
基米德是第一个使用严密推理来求出平行四边形、三角形和梯形物体的重心位置的人,
他还应用近似法,求出了抛物线段的重心。
著名的意大利艺术家、物理学家和工程师达·芬奇是文艺复兴时期首先跳出中世纪烦琐
科学人们中的一个,他认为实验和运用数学解决力学问题有巨大意义。他应用力矩法解
释了滑轮的工作原理;应用虚位移原理的概念来分析起重机构中的滑轮和杠杆系统;在
他的一份草稿中,他还分析了铅垂力奇力的分解;研究了物体的斜面运动和滑动摩擦阻
力,首先得出了滑动摩擦阻力同物体的摩擦接触面的大小无关的结论。
对物体在斜面上的力学问题的研究,最有功绩的是斯蒂文,他得出并论证了力的平行四
边形法则。静力学一直到伐里农提出了著名的伐里农定理后才完备起来。他和潘索多边
形原理是图解静力学的基础。
分析力学的概念是拉格朗日提出来的,他在大型著作《分析力学》中,根据虚位移原理
,用严格的分析方法叙述了整个力学理论。虚位移原理早在1717年已由伯努利指出,而
应用这个原理解决力学问题的方法的进一步发展和对它的数学研究却是拉格朗日的功绩
静力学的内容
静力学的基本物理量有三个:力、力偶、力矩。
力的概念是静力学的基本概念之一。经验证明,力对已知物体的作用效果决定于:力的
大小(即力的强度);力的方向;力的作用点。通常称它们为力的三要素。力的三要素可
以用一个有向的线段即矢量表示。
凡大小相等方向相反且作用线不在一直线上的两个力称为力偶,它是一个自由矢量,其
大小为力乘以二力作用线间的距离,即力臂,方向由右手螺旋定则确定并垂直于二力所
构成的平面。
力作用于物体的效应分为外效应和内效应。外效应是指力使整个物体对外界参照系的运
动变化;内效应是指力使物体内各部分相互之间的变化。对刚体则不必考虑内效应。静
力学只研究最简单的运动状态即平衡。如果两个力系分别作用于刚体时所产生的外效应
相同,则称这两个力系是等效力系。若一力同另一力系等效,则这个力称为这一力系的
合力。
静力学的全部内容是以几条公理为基础推理出来的。这些公理是人类在长期的生产实践
中积累起来的关于力的知识的总结,它反映了作用在刚体上的力的最简单最基本的属性
,这些公理的正确性是可以通过实验来验证的,但不能用更基本的原理来证明。
静力学的研究方法有两种:一种是几何的方法,称为几何静力学或称初等静力学;另一
种是分析方法,称为分析静力学。
几何静力学可以用解析法,即通过平衡条件式用代数的方法求解未知约束反作用力;也
可以用图解法,即以力的多边形原理和伐里农--潘索提出的索多边形原理为基础,用
几何作图的方法来研究静力学问题。分析静力学是拉格朗日提出来的,它以虚位移原理
为基础,以分析的方法为主要研究手段。他建立了任意力学系统平衡的一般准则,因此
,分析静力学的方法是一种更为普遍的方法。
静力学在工程技术中有着广泛的应用。例如对房屋、桥梁的受力分析,有效载荷的分析
计算等。
2.理想力学
理性力学是力学中的一门横断的基础学科,它用数学的基本概念和严格的逻辑推理,研
究力学中带共性的问题。理性力学一方面用统一的观点,对各传统力学分支进行系统和
综合的探讨,另一方面还要建立和发展新的模型、理论,以及解决问题的解析方法和数
值方法。
理性力学的研究特点是强调概念的确切性和数学证明的严格性,并力图用公理体系来演
绎力学理论。1945年后,理性力学转向以研究连续介质为主,并发展成为连续统物理学
的理论基础。
理性力学的发展简史
奠基时期 牛顿的《自然哲学的数学原理》一书可看作是理性力学的第一部著作。从牛顿
三定律出发可演绎出力动的全部主要性质。另一位理性力学先驱是瑞士的雅各布第
一·伯努利,他最早从事变形体力学的研究,推导出沿长度受任意载荷的弦的平衡方程
。通过实验,他发现弦的伸长和张力并不满足线性的胡克定律,并且认为线性关系不能
作为物性的普遍规律。
法国科学家达朗贝尔于1743年提出:理性力学首先必须象几何学那样建立在显然正确的
公理上;其次,力学的结论都应有数学证明。这便是理性力学的框架。
1788年法国科学家拉格朗日创立了分析力学,其中许多内容是符合达朗贝尔框架的;其
后经过相当长的时间,变形体力学的一些基本概念,如应力、应变等逐渐建立起来;18
22年法国柯西提出的接触力可用应力矢量表达的"应力原理",一直是连续介质力学的
最基本的定;1894年芬格建立了超弹性体的有限变形理论;关于有向连续介质的猜想
是佛克脱和迪昂提出的,其理论则是由法国科学家科瑟拉兄弟在1909年建立的。
1900年,著名德国数学家希尔伯特在巴黎国际数学大会上,提出的23个问题中的第6个问
题就是关于物理学(特别是力学)的公理化问题。1908年以来,哈茂耳重提此事,但当时
只限于一般力学的范围。
停滞时期 约从20世纪初到1945年。这段时期形成了以从事线性力学及其相关数学的研究
为主的局面。线性理论充分发挥了它解释力学现象和解决工程技术问题的能力,并使与
之相关的数学也发展到相当完善的地步。相形之下,非线性理论的研究没有多大进展,
理性力学也因此处于停滞时期。
复兴时期 从1945年起,理性力学开始复兴。复兴不是简单的重复,而是达朗贝尔框架在
连续介质力学方面的进一步发展。这种变化是由1945年赖纳和1940年里夫林的工作引起
的。
赖纳的工作是研究非线性粘性流体,过去长期不得解决的所谓油漆搅拌器效率不高的问
题,因为有了这个非线性粘性流体理论而真相大白。里夫林的工作是在任意形式的贮能
函数下,对于等体积变形的不可压缩弹性体,给出了几个简单而又重要问题的精确解,
用这个理论解释橡胶制品的特性取得惊人的成功。另外,过去得不到解决的"柱体扭转
时为什么会伸长"的问题也自然获得解决。这两个工作揭开了理性力学复兴的序幕。
奥尔德罗伊德1950年提出本构关系必须具有确定的不变性,这个思想后来就发展成为客
观性原理。1953年,特鲁斯德尔提出低弹性体的概念。同年,埃里克森发表了各向同性
不可压缩弹性物质中波的传播理论。
1956年以来,图平关于弹性电介质的系统研究,为电磁连续介质理论的发展打下了基础
;1957年托马期关于奇异面的研究是另一重大进展;1957年诺尔首先提出纯力学物质理
论的公理化问题。次年,他发表了连续介质的力学行为的数学理论,这便是简单物质的
公理体系的雏型,后来逐渐发展成为简单物质谱系。
1958年埃里克森和特鲁斯德尔提出的杆和壳中应力和应变的准确理论,德国学者金特尔
关于科瑟拉连续统的静力学和运动学的论文,引起了对有向物体理论的重新认识和系统
研究。1969年科勒曼和诺尔建立了连续介质热力学的一般理论。
1960年特鲁斯德尔和图平所著《古典场论》,以及1966年特鲁斯德尔和诺尔所著《力学
的线性场论》两书,概括了以前有关理性力学的全部主要成果,是理性力学的两部经典
著作。这两部书的出版标志着理性力学复兴时期的结束。
发展时期 1966年以来,理性力学进入发展时期。它的发展是和当代科学技术发展的总趋
势相呼应的。这个时期的特点是理性力学本身不断向深度和广度发展,同时又与其他学
科相互渗透,相互促进。
理性力学的发展主要涉及五个方面:公理体系和数学演绎;非线性理论问题及其解析和
数值解法;解的存在性和唯一性问题;古典连续介质理论的推广和扩充;以及与其他学
科的结合。
理性力学的研究内容
连续介质力学是研究连续介质的宏观力学行为。连续介质力学用统一的观点来研究固体
和流体的力学问题,因此也有人把连续介质力学狭义地理解为理性力学。
纯力学物质理论主要研究非极性物质的纯力学现象。诺尔提出的纯力学物质理论的公理
体系由原始元、基本定律和本构关系三部分组成。1960年科勒曼和诺尔提出减退记忆原
理。在这个公理体系下,并给出各类物质的谱系是纯力学物质理论的中心课题。纯力学
物质研究得比较充分,尤其是简单物质理论已形成相当完整的体系,这是理性力学中最
成功的一部分。
热力物质理论是用统一的观点和方法,研究连续介质中的力学和热学的耦合作用,1966
年以来逐渐形成热力物质理论的公理体系。这个公理体系也是由原始元、基本定律和本
构关系三部分组成,但其内容比纯力学物质理论更为广泛。到目前为止还没有一个公认
的、完整的热力物质理论,它正在各派学者的争论中发展并不断完善。
电磁连续介质理论是按连续统的观点研究电磁场与连续介质的相互作用。由于现代科学
技术发展的客观需要,电磁连续介质理论的研究越来越受到重视,已成为现代连续介质
力学的重要发展方向之一。
混合物理论是研究由两种以上,包括固体和流体形式物质组成的混合物的有关物理现象
。混合物理论可以用来研究扩散现象、多孔介质、化学反应介质等问题。
连续介质波动理论是研究波在连续介质中传播的一般理论和计算方法。连续介质波动理
论把任何以有限速度通过连续介质传播的扰动都看做是"波",所以研究的内容是相当
广泛的。在连续介质波动理论中,奇异面理论占有十分重要的地位,但到目前为止,研
究尚少。
广义连续介质力学是从有向物质点连续介质理论发展起来的连续介质力学。广义连续介
质力学包括极性连续介质力学、非局部连续介质力学和非局部极性连续介质力学。极性
连续介质力学主要研究微态固体和微态流体,特别是微极弹性固体和微极流体。非局部
连续介质力学则主要研究非局部弹性固体和非局部流体。由于非局部极性连续介质力学
是极性连续力学和非局部连续介质力学的结合,所以它的主要研究对象是非局部微极弹
性固体和非局部微极流体。20世纪70年代以来,广义连续介质力学内容在不断扩充,并
已发展成为广义连续统场论。
非协调连续统理论是研究不满足协调方程的连续统的理论。古典理论要求满足协调方程
,但在有位错或内应力存在的物体中,协调方程不再满足,这时对连续位错理论必须引
入非协调的概念。这种非协调理论宜用微分几何方法来描述。最近又开展了连续旋错理
论的研究,把非协调理论和有向物体理论统一起来是一个研究课题,但还未得到完整的
结果。
相对论性连续介质理论是从相对论观点出发研究连续介质的运动学、动力学、热动力学
和电动力学等问题。
除上述的分支和理论外,理性力学还研究非线性连续介质理论的解析或数值方法以及同
其他学科相交叉的问题。
理性力学来源于传统的分析力学、固体力学、流体力学、热力学和连续介质力学等力学
分支,并同这些力学分支结合,出现了理性弹性力学、理性热力学、性连续介质力学等
理性力学的新兴分支。理性力学就是这样从特殊到-般,再从一般到特殊地发展着。理
性力学除了同传统的各力学分支互相捉进外,还同数学、物理学以及其他学科密切相关
3.天体力学
天体力学是天文学和力学之间的交叉学科,是天文学中较早形成的一个分支学科,它主
要应用力学规律来研究天体的运动和形状。
天体力学以往所涉及的天体主要是太阳系内的天体,20世纪50年代以后也开始研究人造
天体和一些成员不多(几个到几百个)的恒星系统。天体的力动是指天体质量中心在
空间轨道的移动和绕质量中心的转动(自转)。对日月和行星则是要确定它们的轨道,编
制星历表,计算质量并根据它们的自传确定天体的形状等等。
天体力学以数学为主要研究手段,至于天体的形状,主要是根据流体或弹性体在内部引
力和自转离心力作用下的平衡形状及其变化规律进行研究。天体内部和天体相互之间的
万有引力是决定天体运动和形状的主要因素,天体力学目前仍以万有引力定律为基础。
虽然已发现万有引力定律与某些观测事实有矛盾(如水星近日点进动问题),而用爱因斯
坦的广义相对论却能对这些事实作出更好的解释,但对天体力学的绝大多数课题来说,
相对论效应并不明显。因此,在天体力学中只是对于某些特殊问题才需要应用广义相对
论和其他引力理论。
天体力学的发展历史
远在公元前一、二千年,中国和其他文明古国就开始用太阳、月亮和大行星等天体的视
运动来确定年、月和季节,为农业服务。随着观测精度的不断提高,观测资料的不断积
累,人们开始研究这些天体的真运动,从而预报它们未来的位置和天象,更好地为农业
、航海事业等服务。
历史上出现过各种太阳、月球和大行星运动的说,但直到1543年哥白尼提出日心体系
后,才有反映太阳系的真运动的模型。
开普勒根据第谷多年的行星观测资料,于1609~1619年间,提出了著名的行星运动三大
定律,深刻地描述了行星运动,至今仍有重要作用。开普勒还提出著名的开普勒方程,
对行星轨道要素下了定义。由此人们就可以预报行星(以及月球)更准确的位置,从而形
成了理论天文学,这是天体力学的前身。
到这时,人们对天体(指太阳、月球和大行星)的真运动还仅处于描述阶段,还未能深究
行星运动的力学原因。
早在中世纪末期,达·芬奇就提出了不少力学概念,人们开始认识到力的作用。伽利略
在力学方面作出了巨大的贡献,使动力学初具雏形,为牛顿三定律的发现奠定了基础。
牛顿根据前人在力学、数学和天文学方面的成就,以及他自己二十多年的反复研究,在
1687年出版的《自然哲学的数学原理》中提出了万有引力定律。他在书中还提出了著名
的牛顿三大运动定律,把人们带进了动力学范畴。对天体的运动和形状的研究从此进入
新的历史阶段,天体力学正式诞生。虽然牛顿未提出这个名称,仍用理论天文学表示这
个领域,但牛顿实际上是天体力学的创始人。
天体力学诞生以来的近三百年历史中,按研究对象和基本研究方法的发展过程,大致可
划分为三个时期:
奠基时期 自天体力学创立到十九世纪后期,是天体力学的奠基过程。天体力学在这个过
程中逐步形成了自己的学科体系,称为经典天体力学。它的研究对象主要是大行星和月
球,研究方法主要是经典分析方法,也就是摄动理论。牛顿和莱布尼茨既是天体力学的
奠基者,同时也是近代数学和力学的奠基者,他们共同创立的微积分学,成为天体力学
的数学基础。
十八世纪,由于航海事业的发展,需要更精确的月球和亮行星的位置表,于是数学家们
致力于天体运动的研究,从而创立了分析力学,这就是天体力学的力学基础。这方面的
主要奠基者有欧拉、达朗贝尔和拉格朗日等。其中,欧拉是第一个较完整的月球运动理
论的创立者,拉格朗日是大行星运动理论的创始人。后来由拉普拉斯集其大成,他的五
卷十六册巨著《天体力学》成为经典天体力学的代表作。他在1799年出版的第一卷中,
首先提出了天体力学的学科名称,并描述了这个学科的研究领域。
在这部著作中,拉普拉斯对大行星和月球的运动都提出了较完整的理论,而且对周期彗
星和木星的卫星也提出了相应的运动理论。同时,他还对天体形状的理论基础--流体
自转时的平衡形状理论作了详细论述。
后来,勒让德、泊松、雅可比和汉密尔顿等人又进一步发展了有关的理论。1846年,根
据勒威耶和亚当斯的计算,发现了海王星,这是经典天体力学的伟大成果,也是自然科
学理论预见性的重要验证。此后,大行星和月球运动理论益臻完善,成为编算天文年历
中各天体历表的根据。
发展时期 自十九世纪后期到二十世纪五十年代,是天体力学的发展时期。在研究对象方
面,增加了太阳系内大量的小天体(小行星、彗星和卫星等);在研究方法方面,除了继
续改进分析方法外,增加了定性方法和数值方法,但它们只作为分析方法的补充。这段
时期可以称为近代天体力学时期。彭加莱在1892~1899年出版的三卷本《天体力学的新
方法》是这个时期的代表作。
虽然早在1801年就发现了第一号小行星(谷神星),填补了火星和木星轨道之间的空隙。
但小行星的大量发现,是在十九世纪后半叶照相方法被广泛应用到天文观测以后的事情
。与此同时,彗星和卫星也被大量发现。这些小天体的轨道偏心率和倾角都较大,用行
星或月球的运动理论不能得到较好结果。天体力学家们探索了一些不同于经典天体力学
的方法,其中德洛内、希尔和汉森等人的分析方法,对以后的发展影响较大。
定性方法是由彭加莱和李亚普诺夫创立的,他们同时还建立了微分方程定性理论。但到
二十世纪五十年代为止,这方面进展不快。
数值方法最早可追溯到高斯的工作方法。十九世纪末形成的科威耳方法和亚当斯方法,
至今仍为天体力学的基本数值方法,但在电子计算机出现以前,应用不广。
新时期 二十世纪五十年代以后,由于人造天体的出现和电子计算机的广泛应用,天体力
学进入一个新时期。研究对象又增加了各种类型的人造天体,以及成员不多的恒星系统
在研究方法中,数值方法有迅速的发展,不仅用于解决实际问题,而且还同定性方法和
分析方法结合起来,进行各种理论问题的研究。定性方法和分析方法也有相应发展,以
适应观测精度日益提高的要求。
天体力学的研究内容
当前天体力学可分为六个次级学科:
摄动理论 这是经典天体力学的主要内容,它是用分析方法研究各类天体的受摄运动,求
出它们的坐标或轨道要素的近似摄动值。
近年,由于无线电、激光等新观测技术的应用,观测精度日益提高,观测资料数量陡增
。因此,原有各类天体的运动理论急需更新。其课题有两类:一类是具体天体的摄动理
论,如月球的运动理论、大行星的运动理论等;另一类是共同性的问题,即各类天体的
摄动理论都要解决的关键性问题或共同性的研究方法,如摄动函数的展开问题、中间轨
道和变换理论等。
数值方法 这是研究天体力学中运动方程的数值解法。主要课题是研究和改进现有的各种
计算方法,研究误差的积累和传播,方法的收敛性、稳定性和计算的程序系统等。近年
来,电子计算技术的迅速发展为数值方法开辟了广阔的前景。六十年代末期出现的机器
推导公式,是数值方法和分析方法的结合,现已被广泛使用。
以上两个次级学科都属于定量方法,由于存在展开式收敛性以及误差累计的问题,现有
各种方法还只能用来研究天体在短时间内的运动状况。
定性理论也叫作定性方法。它并不具体求出天体的轨道,而是探讨这些轨道应有的性质
,这对那些用定量方法还不能解决的天体运动和形状问题尤为重要。其中课题大致可分
为三类:一类是研究天体的特殊轨道的存在性和稳定性,如周期解理论、卡姆理论等;
一类是研究运动方程奇点附近的运动特性,如碰撞问题、俘获理论等;另一类是研究运
动的全局图像,如运动区域、太阳系稳定性问题等。近年来,在定性理论中应用拓扑学
较多,有些文献中把它叫作拓扑方法。
天文动力学又叫作星际航行动力学。这是天体力学和星际航行学之间的边缘学科,研究
星际航行中的动力学问题。在天体力学中的课题主要是人造地球卫星,月球火箭以及各
种行星际探测器的运动理论等。
历史天文学是利用摄动理论和数值方法建立各种天体历表,研究天文常数系统以及计算
各种天象。
天体形状和自转理论是牛顿开创的次级学科,主要研究各种物态的天体在自转时的平衡
形状、稳定性以及自转轴的变化规律。近年来,利用空间探测技术得到了地球、月球和
几个大行星的形状以及引力场方面大量数据,为进一步建立这些天体的形状和自转理论
提供了丰富资料。
天体力学的发展同数学、力学、地学、星际航行学,以及天文学的其他分支学科都有相
互联系。如天体力学定性理论与拓扑学、微分方程定性理论紧密联系;多体问题也是一
般力学问题;天文动力学也是星际航行学的分支;引力理论、小恒星系的运动等是与天
体物理学的共同问题;动力演化是与天体演化学的共同问题,以及地球自转理论是与天
体测量学的共同问题等等。
4.经典力学的建立
近二百年中,欧洲资本主义生产方式陆续取代了封建的生产方式。商业和航海的
迅速发展,需要科学技术。17世纪中叶,欧洲各国纷纷成立科学院,创办科学期刊。
航海需要观测,天文观测和对天体运动规律的研究受到重视。从力学学科本身说,天
体受力和运动比地上物体的受力和运动单纯。因此,力学中的规律往往首先在天体运
行研究中被发现。
动力学
伽利略对动力学的主要贡献是他的惯性原理和加速度实验。他研究了地面
上自由落体、斜面运动、抛射体等运动, 建立了加速度概念并发现了匀加速运动的规
律。C.惠更斯在动力学研究中提出向心力、离心力、转动惯量、复摆的摆动中心等重
要概念。I.牛顿继承和发展了这些成,提出物体运动规律和万有引力定律。运动三定
律是:
第一定律: 任何一个物体将保持它的静止状态或作匀速直线运动,除非有施加
于它的力迫使它改变此状态。
第二定律: 物体运动量的改变与施加于的力成正比,并发生于该力的作用线方
向上。
第三定律: 对于任何一个作用必有一个大小相等而方向相反的反作用。
欧拉是继牛顿以后对力学贡献最多的学者.除了对刚体运动列出运动方程和动力
学方程并求得一些解外,他对弹性稳定性作了开创性的研究,并开辟了流体力学的理论
分析,奠定了理想流体力学的基础,在这一时期经典力学的创建和下一时期弹性力学、
流体力学成长为独立分支之间,他起到了承上启下的作用.
静力学和运动学
静力学和运动学可以看作是动力学的组成部分,但又具有独立的性
质.它们是在动力学之前产生的,又可以看作是动力学产生的前提。斯蒂文从“永久运
动不可能”公设出发论证力的平行四边形法则,他还在前人用运动学的观点解释平衡
条件的基础上,得到虚位移原理的初步形式。为拉格朗日的分析力学提供依据。力系
的简化和平衡的系统理论,即静力学的体系的建立则是L.潘索在《静力学原理》一书
中完成的。在运动学方面,伽利略提出加速度以后,惠更斯考虑点在曲线运动中的加
速度。刚体运动学的研究成果则属于欧拉、潘索。物理学家A.-M安培提出“运动学”
一词,并建议把运动学作为力学的独立部分。至此,力学明确分为静力学、运动学、
动力学三部分。
固体和流体的物性
在建立运动和平衡基本定律的同时,有关物质力学性能的基本定
律也在实验的基础上建立起来。R.胡克1660年在实验室中发现弹性体的力和变形之间
存在着正比关系。在流体方面,B.帕斯卡指出不可压缩静止流体各向压力(压强)相同
。牛顿在《自然哲学的数学原理》中指出流体阻力与速度差成正比,这是粘性流体剪
应力与剪应变之间正比关系的最初形式.1636年M.梅森测量了声音的速度。R.玻意耳
于1662年和E.马略特于1676年各自独立地建立气体压力和容积关系的定律。上述对物
性的了解对后来弹性力学、粘性流体力学、气体力系等学科的出现作了准备。
应用力学
许多学者的研究工作是和工匠一起进行的。惠更斯和一些钟表匠一起制
造钟表。玻意耳和工匠帕潘一起研制水压机。A.帕伦不仅研究梁的弯曲问题,也研究
水轮机的效率问题。许多有工程实际意义的方法产生了,如兰哈尔的半圆拱的计算方
法,静力学中伐里农的索多边形方法。
2018-08-24 轴
作/译者:刘鸿文
出版社:高等教育出版社
出版日期:2008年01月
ISBN:87040239287 [十位:7040239280]
页数:341
重约:0.424KG
定价:¥27.50 本教材是普通高等教育“十一五”国家级规划教材。它保持了原书的风格和特色,作了少量的修订。全书精选的材料力学的基本内容,与第一版相同,包括第1章至第13章,计有:绪论,拉伸、压缩与剪切,扭转,平面图形的几何性质,弯曲内力,弯曲应力,弯曲变形,应力状态分析和强度理论,组合变形,压杆稳定,动载荷,交变应力,能量方法和超静定结构。《简明材料力学》如不讲授最后一章,并对其他章节作适当删减,可用作少学时的材料力学课程的教材;若能在能量方法、超静定结构等方面略作补充,《简明材料力学》亦可用作多学时材料力学课程的教材。
刘鸿文主编的《材料力学实验》(第3版)可与《简明材料力学》配套使用。
与刘鸿文主编的《材料力学》(第4版)配套的、由高等教育出版社出版的《材料力学学习指导书》,也可供使用本教材的学生复习、解题及教师备课时使用。 第1章 绪论
1.1 材料力学的任务
1.2 变形固体的基本设
1.3 内力、应力和截面法
1.4 位移、变形与应变
1.5 杆件变形的基本形式
习题
第2章 拉伸、压缩与剪切
2.1 轴向拉伸与压缩的概念和实例
2.2 拉伸或压缩时杆横截面上的内力和应力
2.3 材料拉伸时的力学性能
2.4 材料压缩时的力学性能
2.5 失效、安全因数和强度计算
2.6 杆件轴向拉伸或压缩时的变形
2.7 轴向拉伸或压缩的应变能
2.8 拉伸、压缩超静定问题
2.9 温度应力和装配应力
2.10应力集中的概念
2.11剪切和挤压的实用计算
习题
第3章 扭转
3.1 扭转的概念和实例
3.2 外力偶矩的计算扭矩和扭矩图
3.3 纯剪切
3.4 圆轴扭转时的应力
3.5 圆轴扭转时的变形
3.6 扭转应变能
3.7 圆柱形密圈螺旋弹簧
3.8 矩形截面杆扭转理论简介
习题
第4章 平面图形的几何性质
4.1 静矩和形心
4.2 惯性矩和惯性半径
4.3 惯性积
4.4 平行移轴公式
4.5 转轴公式主惯性轴
习题
第5章 弯曲内力
5.1 弯曲的概念和实例
5.2 梁的支座和载荷的简化
5.3 剪力和弯矩
5.4 剪力方程和弯矩方程剪力图和弯矩图
5.5 载荷集度、剪力和弯矩间的关系
5.6 刚架和曲杆的弯曲内力
习题
第6章 弯曲应力
6.1 梁的纯弯曲
6.2 纯弯曲时的正应力
6.3 横力弯曲时的正应力
6.4 弯曲切应力
6.5 提高弯曲强度的措施
习题
第7章 弯曲变形
7.1 工程问题中的弯曲变形挠度和转角
7.2 挠曲线的近似微分方程
7.3 用积分法求弯曲变形
7.4 用叠加法求弯曲变形
7.5 弯曲应变能
7.6 简单超静定梁
7.7 提高梁弯曲刚度的措施
习题
第8章 应力状态分析和强度理论
8.1 应力状态概述单向拉伸时斜截面上的应力.
8.2 二向和三向应力状态的实例
8.3 二向应力状态分析
8.4 二向应力状态的应力圆
8.5 三向应力状态简介
8.6 广义胡克定律
8.7 复杂应力状态下的应变能密度
8.8 强度理论概述
8.9 四种常用强度理论
习题
第9章 组合变形
9.1 组合变形和叠加原理
9.2 拉伸或压缩与弯曲的组合
9.3 斜弯曲
9.4 扭转与弯曲的组合
习题
第10章 压杆稳定
10.1 压杆稳定的概念
10.2 两端铰支细长压杆的临界压力
10.3 其他支座条件下细长压杆的临界压力
10.4 欧拉公式的适用范围经验公式
10.5 压杆的稳定校核
10.6 提高压杆稳定性的措施
习题
第11章 动载荷
11.1 概述
11.2 动静法的应用
11.3 受冲击杆件的应力和变形
习题
第12章 交变应力
12.1 交变应力与疲劳失效
12.2 循环特征、平均应力和应力幅
12.3 持久极限
12.4 影响持久极限的因素
12.5 对称循环下的疲劳强度计算
12.6 不对称循环下和扭弯组合下的疲劳强度计算
12.7 提高构件疲劳强度的措施
习题
第13章 能量方法和超静定结构
13.1 应变能的计算
13.2 互等定理
13.3 卡氏定理
13.4 莫尔定理
13.5 用力法解超静定结构
习题
附录A 型钢表
附录B 习题答案
参考文献
作者简介
桥梁的固有频率的大体范围
14.1 轴概述
14.1.1 轴的分类及用途
轴是机械设备中重要的零件之一。轴的主要功用是支承回转运动的传动零件,并传递运动和动力。
一般常见的轴按其轴线形状分为直轴和曲轴两类,这里只讨论直轴。直轴一直都做成实心的,若因机器需要或为减轻机器质量,也可制成空心轴。轴的截面多为圆形,为了轴上零件定位及装拆方便,轴多做成阶梯轴。等直径轴(光轴)形状简单,加工容易,应力集中少,但轴上零件不易装配及定位。
根据承载情况,轴可分为转轴、心轴和传动轴三类。转轴是工作中既受弯矩又受转矩的轴,如减速器中的各轴,这类轴在各种机器中最常见;心轴是工作中只承受弯矩而不承受转矩的轴,心轴有转动心轴和固定心轴两种;传动轴是工作中只传递转矩而不承受弯矩或弯矩很小的轴。
此外,还有一种钢丝软轴,又称钢丝挠性软轴。由多组钢丝分层卷绕而成,具有良好的挠性,能够把回转运动灵活地传到任意位置。
14.1.2 轴的材料
轴毛坯的选择。对于光轴或轴端直径变化不大的轴、不太重要的轴,可选用轧钢圆棒做轴的毛坯,有条件的可直接用冷拔圆钢;直径大的轴可用空心轴;对于重要的轴、受载较大的轴、直径变化较大的阶梯轴,一般用锻坯;对于形状复杂的轴可用铸造毛坯。
轴的材料选择。轴的材料是决定其承载能力的重要因素,多数轴既承受转矩又承受弯矩,多处于变应力条件下工作,因此轴的材料应具有较好的强度和韧性,用于滑动轴承时,还要具有较好的耐磨性。优质碳素结构钢使用广泛,45钢最为常用,调质后具有优良的综合力学性能。不重要的轴也可用普通碳结构钢。高温、重载的轴,受力较大而尺寸较小的轴以及有特殊要求的轴应选用合金结构钢。合金钢对应力集中敏感性高,所以用合金钢的轴的结构形状应尽量减少应力集中源,并要求表面粗糙值低。对于形状复杂的轴,也可以用合金铸铁和球墨铸铁铸造成形,易于得到更合理的形状,而且铸铁还有价廉、良好的吸振性、耐磨性及应力集中的敏感性较低的优点,但是铸造轴的机械性能不易控制,因此可靠性较差。
轴的热处理和表面处理工艺。冷作硬化是一种机械表面处理工艺,也可以用来改善轴的表面质量,提高疲劳强度,其方法有喷丸和滚压等。喷丸表面产生薄层塑性变形和残余压缩应力,能消除微观裂纹和其他加工方法造成的残余应力,多用于热处理或锻压后不需要精加工的表面。滚压使表面产生薄层塑性变形,并大大降低表面粗糙度,硬化表层,也能消除微裂纹,使表面产生残余压缩应力。
14.1.3 轴设计的主要问题
轴的设计包括轴的结构设计和轴的计算。
对于一般机器的轴,要进行强度校核,以防止因轴的强度不够而断裂;对于刚度要求较高的轴和受力大的细长轴,还需进行刚度校核,以防止轴工作中产生过大的变形;对于高速运转的轴,还要进行振动稳定性计算,防止轴发生共振。
设计轴时,首先根据机械传动方案的整体布局,确定轴上零部件的布置和装备方案;选用合适的材料;在力的作用点及支点跨距尚不能精确确定的情况下,按纯扭工况初步估算轴的直径;通过考虑轴与轴上零件的安装、固定及制造工艺性等要求进行结构设计;根据轴的受载情况及使用情况,进行轴的强度和刚度校核计算;必要时还要进行轴强度的精确校核计算;对于转速高、跨度较大、外伸端较长的轴要进行考虑振动稳定性的临界转速计算。
14.2 轴的结构设计
14.2.1 轴的各部分名称及功能
安装轮毂的轴段称轴头,安装轴承的轴端称轴颈,为轴向固定零件所制作出的阶梯称为轴肩或轴环,连接轴颈和轴头的部分称为轴身。
轴头。轴头与回转件的配合性质、公差等级和表面粗糙度,应由传动系统对回转件的技术要求确定。轴头长度应稍小于轮毂宽度,否则不能达到回转件的轴向固定目的。
轴颈。用滑动轴承支承的轴,轴颈与轴瓦为间隙配合。轴颈的公差级别和表面粗糙度应符合滑动轴承的技术要求。用滚动轴承支承的轴,轴颈与轴承内圈多为过渡配合或过盈配合。轴颈的公差级别和表面粗糙度,应按滚动轴承的技术要求设计。
轴肩(或轴环)。轴肩分为定位轴肩和非定位轴肩。轴肩可用作轴向定位面,它是齿轮及滚动轴承等零部件的安装基准。
14.2.2 零件在轴上的固定
零件在轴上的固定,一般是指回转件如何安装在轴的确定位置并与轴连接成一体,轴上零件有游动或空转要求的除外,因而零件在轴上,既要轴向固定,又要周向固定。
零件的轴向定位。轴上零件的轴向定位形式很多,其特点各异,常用结构有轴肩、轴环、套筒、圆螺母、弹性挡圈等。轴肩(轴环)结构简单,可以承受较大的轴向力,应用最为普遍;轴肩的圆内半径r应小于毂孔的圆角半径R或倒角高度C?,以保证零件安装准确到位。定位轴肩其尺寸可按经验设计。轴端挡圈常用于轴端上的零件固定,工作可靠,能够承受较大的轴向力,圆锥形轴头多用于同轴度要求较高的场合。当轴上零件一边用轴肩(轴环)定位时,另一边可用套筒固定,以便拆装,套筒定位结构简单,定位可靠,轴上不需开槽、钻孔和切制螺纹,因而不影响轴的疲劳强度,但套筒也不宜过长,以免增大套筒的质量及材料用量,又因套筒与轴的配合较松,当轴的转速很高时,也不宜用套筒定位。如要求套筒较长时,可不用套筒而用圆螺母固定。一般用于固定轴端零件有双圆螺母和圆螺母与止动垫片两种形式。利用弹簧挡圈、紧定螺钉及锁紧挡圈等进行轴向定位时,只适用于零件上的轴向力不大之处。紧定螺钉和锁紧挡圈常用于光轴上零件的定位,装拆方便。
零件的周向定位。周向定位的目的是限制轴上零件与轴发生相对转动。通常是以轮毂与轴连接的形式出现的,轴毂连接是为了可靠地传递运动和转矩的。常用的周向定位方法有键、花键、紧定螺钉、销以及过盈配合等,其中紧定螺钉只用在传力不大之处。
14.2.3 轴上零件的装拆
为了便于轴上零件的装拆,常将轴做成阶梯型。定位滚动轴承的轴肩高度,必须小于轴承的内圈厚度并应符合国际规定,以便轴承的拆卸。为使轴上零件易于安装并去掉毛刺,轴端及各轴段的端部应有倒角。为了使齿轮、轴承等有配合要求的零件装拆方便,并减少配合表面的擦伤,在配合段前用较小的直径。为了使与轴做过盈配合的零件易于装配,相配轴端的压入端应制出锥度。为使轴上易于装拆,零件之间留有必要的轴向间隙。
14.2.4 轴的结构工艺性
轴的结构工艺性是指轴的结构形式应便于加工和装配轴上的零件,并且生产率高,成本低。一般来说,轴的结构越简单,工艺性越好。
为了便于装配零件,轴端应制成45°的倒角;各轴段的圆角尽量统一,所有键槽在一条直线上;需要磨削加工的轴端,应留有砂轮越程槽;需要切制螺纹的轴端,应留有退刀槽。
14.2.5? 改善轴的受力状况,减小应力集中
可从结构和工艺两方面来取措施提高轴的承载能力。
合理布置轴上零件,减小轴所承受转矩。当转矩由一个传动件输入,而由几个传动件输出时,为了减小轴上的转矩,应将输入键放在中间,而不是置于一端。
改进轴上零件结构,减小轴所承受弯矩。为了减小轴所承受的弯矩,传动件应尽量靠近轴承,并尽可能不用悬臂的支承形式,力求缩短支承跨距及悬臂长度。
改进轴的结构,减少应力集中。轴截面突变,在轴上打孔、紧定螺钉端坑、键槽圆角过小等,都可能引起应力集中而降低轴的疲劳强度。主要措施由:尽量避免形状的突然变化,宜用较大的过度圆角,若圆角半径受限,可用内圆角、凹切圆角或肩环以保证圆角尺寸;过盈配合的轴,可在轴上或轮毂上开减载槽加大配合部分的直径。
改善表面品质,提高轴的疲劳强度。表面越粗糙,轴的疲劳强度越低。用表面强化处理方法,如碾压、喷丸等强化处理;氰化、氮化、渗碳等化学热处理;高频或火焰表面淬火等热处理,可以显著提高轴的承载能力。
14.2.6 各轴段直径和长度的确定
零件在轴上的定位和装拆方案确定后,轴的形状便大体确定。各轴段所需的直径与轴上的载荷大小有关。在轴的结构设计前,通常已能求得轴所受的转矩。因此,可按轴所受的转矩初步估算轴所需的直径。将初步求出的直径作为轴端的最小直径,然后在按轴上零件的装配方案和定位要求,从最小直径处由外向内逐一确定各段轴的直径。
有配合要求的轴端,应尽量用标准直径。安装标准件部位的轴径,应取为相应的标准值及所选配合的公差。
考虑轴上零件的定位和拆装要求,由内向外确定各段轴的轴向尺寸。尽可能使结构紧凑,同时保证零件所需的装配或调整空间。
所确定各轴段长度要与其上相配合零件的宽度相对应,与齿轮和联轴器等零件相配合部分用套筒、螺母、轴端挡圈做轴向固定时,应把装零件的轴端做的比零件轮毂短2~3mm,以确保套筒、螺母或轴端挡圈能靠近零件端面;其余轴端的长度要通过轴上相邻零件间必要的空隙来确定。
14.3 轴的计算
14.3.1 轴的强度计算
进行轴的强度校核计算时,应根据轴的具体受载及应力情况,取相应的计算方法,并恰当的选取其许用应力。
按扭转强度条件计算。这种方法是按扭转强度条件确定轴的最小直径,亦可用于传动轴的计算。对于转轴,由于跨距未知,无法计算弯矩,在计算中只考虑转矩,用降低许用应力的方法来考虑弯矩的影响。轴受转矩作用时,其强度条件为 τ=T/Wt=9.55x10?P/0.2d?n?≤ [τ] , d?≥ {(9.55x10?)/0.2[τ]}?·(P/n)?=C(P/n)? 。其中,n次方为6次方;τ是轴截面中最大扭转剪应力;P是轴传递的功率;n是轴的转速;[τ]是许用扭转剪应力;C是由许用扭转剪应力确定的系数;Wt是抗扭截面模量;d是轴的直径。截面有键槽时,可将轴径适当加大。d>100mm,有一个键槽时增大3%,两个增大7%;30≤d≤100mm,有一个键槽时,增大5%,两个增大10%;d<30,有一个键槽时,增大7%,两个增大15%。
抗弯扭合成强度条件计算。计算步骤如下:轴的计算简图:将阶梯轴简化为简支梁;齿轮、带轮等传动件作用于轴上的分布力,在一般计算中,简化为集中力;作用在轴上的转矩,简化为从传动件轮缘宽度的中点算起的转矩;取轴承宽度中点为作用点,简化轴的支承反力。做出弯矩图。做出转矩图。校核轴的强度。强度条件为 σe=(σb?+4τ?)?≤[σb] ,引入折合系数α,则 σe=Me/W≤[σ-1b] 。其中,W是抗弯截面模量;Wt是抗扭截面模量,对于圆轴Wt=2W;α是根据转矩性质而定的折合系数;Me是当量弯矩, Me=Me=[M?+(αT)?]? 。对于不变的转矩, α=[σ-1b]/[σ+1b]≈0.3 ;当转矩脉动变化时, α=[σ-1b]/[σ0b]≈0.6 ;对于频繁正反转的轴,τ可看成对称循环应力,α=1.若转矩的变化规律不清楚,一般按脉动循环处理。
14.3.2 轴的刚度校核计算
设计时必须根据工作要求限制轴的变形量,即挠度γ≤[γ],偏转角θ≤[θ],扭转角φ≤[φ]。
轴的弯曲刚度校核计算。等直径轴的挠曲线近似微分方程为 d?y/dx?=M/EI ,其中,M是弯矩;E是材料的弹性模量;I是轴的惯性矩。当量直径 de=(L/∑li/di?)? ,其中,n次方为4次方;li是阶段轴第i段的长度;di是阶段轴第i段的直径;L是阶段轴的计算长度;z是阶段轴计算长度内的轴段数;自动加和都是从1到z,下边的也一样。弯曲刚度校核条件为y≤[y],θ≤[θ]。
轴的扭转刚度校核计算。圆轴的计算公式:光轴 φ=Tl/GIp ,阶梯轴 φ=(1/lG)·∑Tili/Ipi ,其中,T是光轴所受的转矩;l是光轴受扭矩作用的长度;Ip是光轴的极惯性矩;G是轴的材料的剪切弹性模量;Ti,li,Ipi是阶段轴第i段的转矩、长度、极惯性矩。扭转刚度校核条件为 φ≤[φ] 。
14.3.3 轴的临界转速校核
产生共振现象时轴的转速称为轴的临界转速,临界转速的校核就是计算出轴的临界转速,以便避开。
轴的临界转速在数值上与轴横向振动的固有频率相同。一个轴在理论上可以有无穷多个临界转速,最低的一个称为一阶临界转速,其余为二阶、三阶...临界转速。
转速低于一阶临界转速的轴称为刚性轴,超过的称为挠性轴。
对于刚性轴,应使 n<0.75nc? ,对于挠性轴,应使 1.4nc?<n<0.7nc? 。nc?,nc?分别为一阶、二阶临界转速。
成为一名机械工程师需要具备哪些知识?
1 铁路桥梁动力学的研究对象及历史
铁路桥梁动力学是建立于应用力学及其分支结构动力学之上的一门学科。它是有关铁路桥梁的变形和应力的研究。荷载用移动车轮和轴力表示,铁路车辆通过车轮将它们的荷载和惯性作用传递到铁路桥梁。车辆对铁路桥梁的动力效应的研究如图1.1所示。
因此,铁路桥梁动力学包括桥梁对移动车辆的响应和桥梁对大量参数(增加动应变或动应力)所造成的影响的响应。影响铁路桥梁动应力的最主要参数是:桥梁结构的频率特性(也就是独立杆件的长度、质量和刚度)、车辆的频率特性(也就是簧上、簧下质墩、弹簧刚度)、桥梁和车辆的阻尼、车辆运行速度、轨道不平顺等等。
车辆不仅通过竖向力,而且也通过产生水平纵向力和水平横向力的运动来影响桥梁。
与静力作用下的结果相比。在动力作用下桥梁的变形会增大或减少。在设计实践中,这些影响用动力系数(或动力冲击系数)来描述。但是,动力系数仅仅表明了为了涵盖附加动荷载而必须将静荷载增大的倍数。由于过于简单,所以动力系数不可能表征上面提到的所有参数效应,但是—般情况下能使桥梁满足安全和可
第1页
靠度的要求。
桥梁的疲劳评估用了新方法。这种方法利用在桥梁营运期间通过的全部列车产生的桥梁应力幅和应力循环数,较接近于实际,为桥梁的疲劳评估、疲劳寿命估算和确定检测周期提供厂有价值的数据。
在桥梁静力学和动力学之间,存在温度引起的线桥相互作用问题。由于温度的变化也随时间而不同,所以尽管温度效应不会引起桥梁的振动,但这些问题的求解也包括在本书中。
除了大范围的铁路桥梁动力学问题,本书还包括了一些常用的试验;这些试验是为了校核运营中桥梁的可靠性也是为丁验证处于研究阶段的新理论的可行性。多年来,正是由于每个独立试验之间存在着较好的可比性,才‘使这些试验方法得以保留井得到了进一步发展.
铁路桥梁动力学领域的科学研究取得了大量的方法和指导性建议,这些方法和建议已融人到铁路桥梁设计和分析的国家甚至国际标准中。
本书中对铁路桥梁动力学问题的简单研究证实了这个学科有着丰富的历史,而且全世界都对桥梁动力学的研究给予极大的关注。确实,车辆在铁路桥上的运动问题是结构动力学关注的第二个问题(仅次于对两个发生碰撞的固体冲击问题的研究)。这个问题早在19世纪前叶英国修建第一条铁路期间就提出来了。当时工程师们分为两派,一派认为铁路机车通过桥梁时会产生冲击,而另一派则认为,当机车通过时,结构还来不及产十变形。
这样就产生了最早期Willis R做的第一个试验和最初Stokes G.G.进行的理论研究,他们均建议把在桥上移动的机车的实际效应放在上面提到的这两种极端意见之间的某个位置。从那时起,铁路桥梁动力学在全世界科技最发达的国家受到了持续的关注。
在大量的本学科****中,值得提及的有Zimmermann H.,KrylovA.N.特别是Timoshenko S.P.,他解决了两个基本问题,一是常力在梁上的运动问题;另一个是谐振力在粱上的运动问题。
在两次世界大战之间,铁路桥梁动力学在前苏联和英国均受到了极大的关注。在这期间最值得提到的是Inglis eE.教授c””,他所进行的经典丁作是从理论与试验两方面解释厂蘸汽机车对铁路桥梁振动的影响。他的研究工作对这个学科以后的发展有着决定性的影响。
在前捷克斯洛伐克,Kolousek V,教授””解决了铁路蒸汽机车在静不定连续梁、刚架和铁路拱桥上的响应。他还和其他捷克和斯洛伐克专家一起做出了其他的贡献.
在前苏联,至少有3个学校对这个学科进行了理论和试验研究。他们的成员包括BondarN.G.教授及其在第聂伯罗彼得罗夫斯克(Dneproperlrovsk)的追随者,圣彼得堡的Kozmin Ju.G.和在莫斯科的Kazej I.I.及其同事。
在美国,有几所大学都一直进行铁路桥梁动力学的研究,特别是西北大学、
2 桥梁的理论模型
铁路桥梁一般是长结构,从它的理论分析模型中也可看出来.原则上,铁路桥梁的理论模型有两类:连续分布质量和集中于质点的质量(集总质量)或两者的结合。选择什么样的模型主要取决于具体的桥梁和分析的目的.
2.1 梁
最常用的铁路桥梁模型是梁模型,梁模型建模容易,而且只体现了结构的线性特性,其横向尺寸同长度相比要小。
2.1.1 质量梁
如果桥梁结构的质量与车辆的质量有可比性或明显大于车辆的质量,则不可忽略桥梁的质量。中等跨度或大跨度桥梁就属于这种情况,必须使用质量梁模型(见图2.1),这是最常用的理论简化。梁的运动方程表示了单元长度粱上力的平衡
微分方程(2.1)是由伯努利和欧拉在定小变形理沦的的提下推导出来的,符合胡克定律、Nier定和圣·维南定理。方程式(2.1)定梁的横截面和单位长度质量为常数,而且按照Kelvin-Voigt模型定阻尼与振动速度成正比.
除微分方程(2.1)外,粱的特性还可用下面的微积分方程描述
第9页
上式是根据影响线理论给出的(见参考文献[68])。在方程式(2.2)中:
G(x,s)为梁的影响函数也町称为格林函数。它是在点s处施加单位力,梁在点x处产生的挠度。l为粱的跨度。
方程式(2.1)和式(2.2)给出的两种方法是等效的.
现行的分析方法用式(2.1),适用于应用数学的全部分析方法和数值方法。方程式(2.2)则是对于影响函数G(x,s)已知(比如,来自结构分析)的情况具有一定优势.第二个方法的优点是Fredholm型积分方程的理论有时可以考虑用有限次连续逼近的方法估计误差(见参考文献[174])。
1.1.1 无肚量梁和其他特例
如桥梁结构或其部件的质量较车辆的质量小很多,那么就町以完全把它略去不计,这样我们就得到如图2.2所示的无质量梁。这种理想化用于小跨度桥梁及满足上述条件的纵、横梁。这样一个梁的运动方程可从方程式(2.1)和式(2.2)得到(取u→0)
式中各符号的意义同方程式(2.1)和式(2.2)。
但是,式(2.3)和式(2 4)的荷载f(x,t)必须考虑力和惯性效应,参见第3 4.3节。
这就使得解方程式(2.3)和式(2.4)比解方程式(2.1)和式(2.2)困难得多。这是因为根据最初的设,在这些等式中可能忽略了荷载的惯性效应,详见参考文献C68)。
如果方程式(2.1)中粱的刚度很小,可以忽略,即I→0,则梁可简化成一根弦,弦的承载能力由拉伸弦的水平力N提供。这样就导出下式
式中N在梁受拉时为正,这种情况总成立.
不能用方程式(2.5)作为铁路桥梁的理想化模型,因为铁路桥梁总是必须有足够的刚度(洋见参考文献[68],第14章)。
悬索桥理论模型叮以从方程式
3 铁路车辆建模
铁路车辆是具有多自由度,线性和非线性弹簧及不同类型阻尼器的复杂机械系统。当车辆通过时,将会以空间定位的力,即竖向力(车乾或车轴力)、水平纵向力(起动和制动力)和水平横向力(离心力和横向冲击)等来影响桥梁,见图3.1.
根据牛顿定律和达伦贝尔定理,车辆产生重力效应(即车辆重量引起的竖向力)和惯性效应(即车辆质量和加速度效应).即使车辆不动,重力效应仍然存在,因此重力效应是桥梁静态分析的主要输入。静态力沿垂直方向作用。仅当车辆沿各方向运动时,才会产生惯性效应,因此惯性效应是动力效应的原因.
一般来讲,铁路桥梁上的荷载是由从桥上通过的车辆运动引起的。这是一个很复杂的问题,因此在工程实践中经常进行筒化处理。简化方法取决于分析的目的。例如,我们的主要目的是进行铁路桥梁的动力分析,那么考虑轮轨间的全部接触力和类似的因素是毫无意义的,因为由于多次滤波或根据圣维南局部作用原理,这些因素的影响仅限于局部,并不影响更远点(例如铁路桥梁的主梁)。
我们将较为详细地就最常用的铁路车辆建模方法进行讨论.
3.1 移动的竖向力
3.1.1 常力
如果移动车辆的惯性效应比其重力效应要小得多,则惯性力可以完全略去不计.这适用于中等跨和大跨度桥梁(超过30m),这些桥梁自重要比车重大得多。
4 铁路桥梁的固有频率
铁路桥梁最重要的动力特性就是桥梁的固有频率,它实际上表征r桥梁对动荷载的敏感程度。用单位时间内振动的次数来测量频率。频率的单位是Hz,即每秒完成的循环数。
具有连续质量分布的机械系统有尤穷多个固有频率,而仅有最低的频率有实际应用。如施加于系统的激振力具有宽频带,结构仅选择接近于自己固有频率的频率并对这些频率做出响应。这就是固有频率比较重要的原因。
固有频率的符号是fj,而下标j=1,2,3,…表示它们的序号。除了fj,还有固有圆频率wj,其中
4.1 固有频率的计算
从式(4.6)中可求得圆频率wj,也可以根据式(4.1)或式(4.2)求得相应的量fj或Tj。求解式(4.6)的专门方法在动力学或数值分析等有关文章中均有描述,如参考文献[8。120,174]。这些方法中有一些只计算固有频率的最低值或近似值。
式(4.6)的极wj与我们从式(4.5)中得到的特征向量{qi}有关,具有有意义的正交特性。因此,对于n自由度的系统,有”个固有频率和n个因有振动模态,j=1,2,3,……,n。
5 铁路桥梁的阻尼
阻尼是建筑材料和结构一种合乎要求的特性,在大多数情况下,它可以在车辆通过后或是受到其他激励后,降低动力响应并促使桥梁很快地恢复到平衡状态。
阻尼的物理成因非常复杂。振动过程中,一种形式能量转换成另一种形式(势能变成动能,反之亦然),部分能量由于材料的塑性变形损失掉,或是转换成为热能、声能等其他形式能量。这样,车辆通过而产生的能量不可逆地消散到环境中.
桥梁结构阻尼源包括内部和外部两种。内阻尼源包括建筑材料发生变形过程中受到的黏性内摩擦、非匀质性、裂纹等。桥梁外阻尼源包括支座摩擦、线路特别是道碴的摩擦,结构连接处的摩擦,结构的空气动阻力(相对于铁路桥梁的极大刚性而言很小),桥梁墩台下面及周围的土石等的黏弹性特性。
显而易见,铁路桥梁的振动阻尼源非常多,几乎不可能将它们全部考虑到工程计算中。阻尼值依赖于结构的材料(钢、钢筋混凝土、预应力混凝土)和结构的状态(出现裂缝,有道碴等)。阻尼的幅值也依赖于振动的幅值;然而在这方面,强迫振动的影响还没有进行充分的研究。一般情况下强迫振动的分量比车辆离开桥梁后所产生的自由振动幅值高。然而在50Hz以下的低频区段阻尼对频事的依赖性很小,而这个区段为铁路桥梁振动的上要频率范围。
5.1 力通过时梁的阻尼振动
在参考文献[1仲描述了有大量阻尼定。在此,我们仅考虑三个最重要的阻尼理论并就图5.1所示常力通过时(即第3章描述的基本工况),它们对简支梁振动的影响进行评价。我们的基本设是,在时间o≤t≤l/c内粱产生最大静、动挠度,静功挠度在设计中非常重要。当力岗汗后,梁产生的自由振动振幅很小,因此,这种次要现象实践中意义不大(仅仅用来估计固有频率和阻尼特性以及作疲劳估算)。
第61页
5.1.1 与撮动速度成正比的黏性阻尼
黏性阻尼的Kelvin-voigt理论设对粱的每一单元其阻尼均与振动的速度成正比。该定实践上表达了浸润在掖体中的固体外阻尼。但是由于它的数学表达式很简单,这种设迄今为止应用得最广泛,即使定阻尼依赖于振动频率,有时与试验值不一致。然而对于像铁路桥梁这样复杂的大结构而言,总的结果通常与试验有较好的一致性。
从梁单元(图5.2)在以速度c运动的常力F[符号同式(2.1)具有相同意义,见第 2.1.1节,第3.1.1节和第3.4.3节]作用下的竖向力和弯矩平衡条件可以导出偏微分方程式
在参考文献[68]的第一章中对式(5.1)在所有黏性阻尼和速度工况下的完全解进行厂推导。在此只给出结果
6 车辆速度对桥梁动应力的影响
车辆速度是影响铁路桥梁动应力的最主要参数。一般地说,桥梁的动应力随车速的提高而增大。同时,桥梁动应力也取决于车桥动力系统,轨道不平顺及其他参数。
考虑到总趋势是列车提速,对高速下桥梁的动应力必须给予足够重视。例如,国际铁路联盟(UIC)的试验研究办公室(ORE)在这个领域的几个研究项目集中于阐明有关应力[159]、疲劳[162]、噪声[161]及其对人的影响等方面的问题.而且日本国铁也对高速下的桥梁进行了试验。屉新现场测试已经测定了铁路桥梁在车速达250km/h时的动应力(图6.6),而理论计算结果已经推导至500km/h以上(图6.3)。
理论分析中考虑车辆过桥时刻的速度是常数,事实也就是这样。实际的车速依赖于在桥上轨道的水平和竖向轨向情况。即使在桥上线路较差或临时出现问题的条件下,车速也会保持不变,只不过会降低一些。
然而,当车辆或列车在桥上起动和制动时速度会发生变化。这样的情况在本章中也会考虑。
6.1 匀速运动
最简单的情况,即一个集中力F沿着简支梁做匀速运动,在第5.1.1节中已经求解,梁对这样激励的响应由式(5.2)求解,式(5.2)表明粱的挠度v(x,t)是由式(5.4)定义的无量纲的速度参数。的函数。
从式(5.2)可求出梁的跨中最大挠度maxv(1/2,t)/Vo(式中v0可由式(5.3)求出),并可绘制出如图6.1所示的跨中最大挠度与不同阻尼B(式(5.5))和速度参数a(式(5.4))的关系曲线.图6.1表明,在欠阻尼时,桥梁动力效应随速度提高而增大直至a≈0.5~0.7。当。更大时,梁的跨中挠度减小,而对非常小的。动挠度接近于静挠度。
第75页
根据式(5.4)可以推出对当前铁路速度、通常固有频率以及桥梁跨度而言,速度参数。小于1。这就解释了为什么桥梁动力响应随着速度的增加而增大。
这种现象在比单个力沿简支梁移动这种模型更复杂的模型下也得到了证实。例如,图6.2重现了捷克铁路(CD)多轴车辆沿着具有弹性层和轨道不平顺的粱运动的理论模型(根据参考文献[683]。
根据这个模型,当重850kN的E10型4轴电力机车沿跨度10m的预应力混凝土桥通过时,动力系数o对速度c的关系(图6.3)可根据不同深度a=0;0.25;0.5mm轨道不平顺产生的轨枕效应计算出来。图6.3给出计算的应力动力系数。
7 轨道不平顺及其他参数的影响
轨道不平顺代表着车辆通过桥梁时一种重要的激励源。轨道不平顺由钢轨内缘与理想钢轨儿何轮廓的偏差组成,在无载位置和有载位置(即车辆以极低速度通过桥梁时出现的几何偏差)均可发生。无载与有载位置的轨道不平顺的差异有时很大;这些差别主要取决于铁路轨道各独立单元和桥梁之间的间隙、各单元的弹性或非弹性特性等.
根据图7.1可区别出4种轨道不平顺:
第82页
为两轨头内缘之间的水平距离,在轨顶下方14mm处垂直于轨道方向测得。
在式(7.1)一式(7.4)和图7.1中,字母yi和zi分别表示左轨(下标为1)和右轨(下标为2)在x处的坐标。有时也用到其他的轨道不平顺定义。
轨道高低和超高不平顺主要影响车辆和桥梁的竖向振动,而轨向、轨距和轨道超高不平顺会引发车辆和桥梁的横向振动以及桥梁的扭转。
所有铁路管理部门均根据对直线和曲线轨道所规定的容许值来限制实际值与理想值的偏差,容许值的规定也考虑了行车速度的影响。
轨道不平顺沿线路长度x的分布(图7.1)可以是周期性的或完整不规则的(随机的)。
7.1 周期性的轨道不平顺
周期性的轨道不平顺可用傅里叶三角级数解析地描述为
从测试得到.
图7.2给出了参考文献[68]中列出的—些典型的高低轨道不平顺。对许多情
8 作用于桥上的水平纵向力
铁路车辆沿着桥梁运动会引起水平纵向力,水平纵向力通过与钢轨的摩擦,再经过线路其他部件传递到桥梁上部结构、支座、桥墩和桥台上。
在车辆以恒速运行时,经滚动摩擦从车轮传递到桥梁上的水平纵向力相对而言较小。然而,当车辆不是以恒速运行时,就会产生较大的水平纵向力,这种情况发生在起动和制动时。在这种情况下,在车辆车轮与钢轨间作用有较大的黏着力,这种黏着力对车辆的起动和制动是必需的。
8.1 考虑黏着力时圆盘沿梁的滚动
图8.1给出了这个问题的最简单模型,即质量为m、重F=mg、转动惯量为I。的圆盘沿跨长/的简支梁运动。除它的重量F外,圆盘还受到竖向分量为mv0(t)、水平分量为mu0(t)的惯性力,惯性矩I0p(t),作用于距圆盘中心臂长p处梁的垂向反作用力F(t)(描述滚动摩擦效应),轮周上的水平力H(t),牵引力T(t),驱动力矩M(t)和运动阻力w(t)等的影响。
图8.1中圆盘滚动方向是从左向右,而且作用力和力矩的方向按加速运动考虑。
梁受到与圆盘方向相反的力F(t)和H(t)以及其他具有黏性阻尼的伯努利—欧拉梁模型中定的力的作用。它们的竖向变形表示为v(x,t),水平向变形表示为u(x,t)。
圆盘的运动用竖向位移v0(t)、水平位移u0(t)和转动p(t)来描述。梁的初始位置是无变形状态,即是处于梁的左边支座上方位置。
有了这些设,下边的方程式对梁的振动和圆盘的运动恒成立
第90页
式(8.1)和式(8.2)描述了梁的弯曲和纵向振动,在进行某些简化后,这两种运动是相互独立的,这在参考文献[70]中已得到验证。作用于圆盘亡的竖向力平衡方程用式(8.3)表达,水平力和弯矩的平衡方程分别用式(8.4)和式(8.5)表达。且根据圆盘沿梁的滚动运动(无滑动)可得出
如果F(c)<o,则必须将F(t)=0代入式(8 1)一式(8,5)中,而式(8.6)就不再有效了。
同样,作用于车轮圆周上的水平力H(t)由某些影响它的其他力和力矩的相关条件来确定。首先,把关系式(8.7)代人式(8.5)中,接着求出u0(t)并将其代入式(8.4)中。这样,我们就得到圆盘转动时,力H(t)必须满足的条件
9 作用于桥上的水平横向力
直线轨道上,铁路车辆横向运动产生的水平横向力源自两个方面:轨道的横向不平顺和圆锥踏面的车轮沿柱面轨头的正弦运动。荷载可用水平横向随机力系表征,该力系作用于轨头平面并随时间变化。力的数量与车辆或列车的车轮数一致。
除厂称为横向冲击的这两个激励源外,在桥上的曲线轨道上还有方向朝外的离心力作用。
沿桥梁的竖向随机力运动问题S1amaJ.和Sniady B.已经进行了研究.在下面章节中我们将研究两种随机水平横向力的简化模型,并推导作用于铁路桥梁上随机水平横向力的解。
9.1 梁
铁路桥梁最常用的模型是伯努利—欧拉粱,该梁受N个力作用,这N个力是时间的随机函数,并且按照确定的间距dn作用于桥梁上,参见图9.1。在该粱上可分别研究竖向、横向和扭转振动。
9.1.1 竖向振动
梁的竖向振动受图9.1所示轴力Fn(t),n=1,2,…,N的影响。用伯努利—欧拉微分方程来描述梁的变形
第118页
EI——梁的抗弯刚度系数;
u——梁的单位长度的质量常数.
(1)近似解
可以导出式(9.1)在低速和小阻尼情况下的近似解。对于铁路桥梁而言,这两个必要条件都符合,因为目前铁路车辆的速度与其临界速度(与式(5.4)和第6.1节比较)相比还很低.近似解很好地表征了沿梁运动的力系的特性。
忽略式(9.1)左边的第二项,我们得到其如下形式的解
根据上边所提的定,可认为上式是具有零初始条件和具有简支梁边界条件的式(9.1)的近似解(准静态)一与参考文献[68]中的式(1.30)比较.
在式(9.3)中使用下列符号:
挠度的方差可从式(9.6)求得
10 铁路桥梁的运营荷载
根据牛顿定律和达伦贝尔原理,车辆对铁路桥梁的加载符合下列要求:
——作用力可以是静荷载也可以是动荷载;
——作用力方向:竖向,水平横向和水平纵向;
——作用力的幅值由运营列车、标准荷载和极端荷载产生。
本章和上面三章我们考虑运营荷载,也就是说,当前每天运营产生的荷载,这对于桥梁的疲劳评怕非常重要。
田c洲铁路局将一年内有用荷载的质量和包括通过给定铁路桥梁的机车在内的车辆的质量作为运营荷载单位。它以每年百万吨表示。这个单位有两个优点:
(1)在铁路统计学里一般有记录(或是可以根据相应铁路部门所管辖里程长度划分,通过总吨公里计算出)。
(2)桥梁的疲劳损伤近似地与运营荷裁成正比。
根据参考文献[162],桥梁的运营荷载通常分为以下几类;
前捷克斯洛伐克的铁路在世界上位于最繁忙之列,而且在有些工务段运营荷载大大地超过60X10^6t·a。图10.1给出了过去100年来,在的捷克斯洛伐克一条铁路主干线上运营荷载的发展。从图中曲线可看出,直到战后运营荷载一直缓慢增加,而从1950年起才开始急剧增长。
整个前捷克斯洛伐克的铁路网运背荷载平均值的发展与一线路上的运营荷载是类似的。结果列于图10.2,图10.2是根据统计数据绘制的。
在图10.1和图10.2中列举的铁路桥梁运营荷载的增加是与每个国家的科技和经济水平的发展分不开的。桥梁自身也不幸受到这种趋势带来不利的影响,特别是受降低结构的疲劳寿命和减少对线桥维修的可能性的影响。
运营荷载由轴力、轴距和速度来表征。
第136页
10.1 轴 力
过去的一段时间以来,不仅铁路运营荷载有所增加而且铁路车辆的轴力或轮力也有所增大.直到1870年,前奥-匈帝国的桥梁荷载还根据用户(即铁路公司)和桥梁建设者之间达成的协议进行设计.
到1870年,奥—匈帝国贸易部颁布法规,规定铁路桥梁按照均布荷载设计,均布活载的大小与桥梁的跨度有关。对于跨度1m及以上时,均布荷载约为180kN.m^-1,对于跨度超过30m的桥梁,均布活载降为36kN·m^-1。除此之外,结构还承受
可以了不?
希望这个能帮到你。
注册机械工程师资格考试基础考试大纲
一. 高等数学
1.1 空间解析几何向量代数 直线 平面 柱面 旋转曲面 二次曲面 空间曲线
1.2 微分学极限 连续 导数 微分 偏导数 全微分 导数与微分的应用
1.3 积分学不定积分 定积分 广义积分 二重积分 三重积分 平面曲线积分 积分应用
1.4 无穷级数数项级数 幂级数 泰勒级数 傅里叶级数
1.5 常微分方程可分离变量方程 一阶线性方程 可降阶方程 常系数线性方程
1.6 概率与数理统计随机与概率 古典概型 一维随机变量的分布和数字特征 数理统计的基本概念参数估计 设检验 方差分析 一元回归分析
1.7 向量分析
1.8 线性代数行列式 矩阵 n维向量 线性方程组 矩阵的特征值与特征向量二次型
二. 普通物理
2.1 热学气体状态参量 平衡态 理想气体状态方程 理想气体的压力和温度的统计解释 能量按自由度均分原理 理想气体内能 平衡碰撞次数和平均自由程 麦克斯韦速率分布律 功 热量 内能 热力学第一定律及其对理想气体等值过程和绝热过程的应用 气体的摩尔热容 循环过程 热机效率 热力学第二定律及其统计意义 可逆过程和不可逆过程 熵
2.2 波动学机械波的产生和传播 简谐波表达式 波的能量 驻波 声速 超声波 次声波 多普勒效应
2.3 光学相干光的获得 杨氏双缝干涉 光程 薄膜干涉 麦克尔干涉仪 惠更斯——菲涅耳原理 单缝衍射 光学仪器分辨本领 x射线衍射 自然光和偏振光 布儒斯特定律 马吕斯定律 双折射现象 偏振光的干涉 人工双折射及应用
三. 普通化学
3.1 物质结构与物质状态原子核外电子分布 原子、离子的电子结构式 原子轨道和电子云 离子键特征共价键特征及类型 分子结构式 杂化轨道及分子空间构型 极性分子与非极性分子 分子间力与氢键 分压定律及计算 液体蒸气压 沸点 汽化热 晶体类型与物质性质的关系
3.2 溶液溶液的浓度及计算 非电解质稀溶液通性及计算 渗透压 电解质溶液的电离平衡 电离常数及计算 同离子效应和缓冲溶液 水的离子积及ph值 盐类水解平衡及溶液的酸碱性 多相离子平衡 溶度积常数 溶解度计算
3.3 周期表周期表结构 周期 族 原子结构与周期表关系 元素性质 氧化物及其水化物的酸碱性递变规律
3.4 化学反应方程式 化学反应速率与化学平衡化学反应方程式写法及计算 反应热 热化学反应方程式写法 化学反应速率表示方法 浓度、温度对反应速率的影响 速率常数与反应级数 活化能及催化剂化学平衡特征及平衡常数表达式 化学平衡移动原理及计算 压力熵与化学反应方向判断 3.5 氧化还原与电化学氧化剂与还原剂 氧化还原反应方程式写法及配平 原电池组成及符号 电极反应与电池反应 标准电极电势 能斯特方程及电极电势的应用 电解与金属腐蚀
3.6 有机化学有机物特点、分类及命名 官能团及分子结构式有机物的重要化学反应:加成 取代 消去 氧化 加聚与缩聚典型有机物的分子式、性质及用途:甲烷 乙炔 苯 乙醇 酚 乙醛 乙酸 乙酯 乙胺 苯胺 聚氯乙烯 聚乙烯 聚丙烯酸 酯类 工程塑料(ABS) 橡胶 尼龙66
四. 理论力学
4.1 静力学平衡 刚体 力 约束 静力学公理 受力分析 力对点之矩 力对轴之矩 力偶理论 力系的简化 主失 主矩 力系的平衡 物体系统(含平面静定桁架)的平衡 滑动摩擦 摩擦角 自锁 考虑滑动摩擦时物体系统的平衡 重心
4.2 运动学点的运动方式 轨迹 速度和加速度 刚体的平动 刚体的定轴转动 转动方式 角速度和角加速度 刚体内任一点的速度和加速度
4.3 动力学动力学基本定律 质点运动微分方程 动量 冲量 动量定理 动量守恒的条件 质心 质心运动定理 质心运动守恒的条件 动量矩 动量矩定理 动量矩守恒的条件 刚体的定轴转动微分方程 转动惯量 回转半径 转动惯量的平行轴定理 功 动能 势能 动能定理 机械能守恒 惯性力 刚体惯性力系的简化 达朗伯原理 单自由度系统线性振动的微分方程 振动周期 频率和振幅 约束 自由度 广义坐标 虚位移 理想约束 虚位移原理
五. 材料力学
5.1 轴力和轴力图 拉、压杆横截面和斜截面上的应力 强度条件 虎克定律和位移计算 应变能计算
5.2 剪切和挤压的实用计算 剪切虎克定律 切(剪)应力互等定理
5.3 外力偶矩的计算 扭矩和扭矩图 圆轴扭转切(剪)应力及强度条件 扭转角计算及刚度条件 扭转应变能计算
5.4 静矩和形心 惯性矩和惯性积 平行移轴公式 形心主惯性矩
5.5 梁的内力方程 切(剪)力图和弯矩图 分布载荷、剪力、弯矩之间的微分关系 正应力强度条件 切(剪)应力强度条件 梁的合理截面 弯曲中心概念 求梁变形的积分法 迭加法和卡式第二定理
5.6 平面应力状态分析的数值解法和图解法 一点应力状态的主应力和最大切(剪)应力 广义虎克定律 四个常用的强度理论
5.7 斜弯曲 偏心压缩(或拉伸) 拉—弯或压—弯组合 扭—弯组合
5.8 细长压杆的临界力公式 欧拉公式的适用范围 临界应力总图和经验公式 压杆的稳定校核
六. 流体力学
6.1 流体的主要物理性质
6.2 流体静力学流体静压强重力作用下静水压强的分布规律 总压力的计算
6.3 流体动力学基础以流场为对象描述流动流体运动的总流分析 恒定总流连续性方程、能量方程和动量方程
6.4 流动阻力和水头损失实际流体的两种流态——层流和紊流圆管中层流运动、紊流运动的特征沿程水头损失和局部水头损失边界层附面层基本概念和绕流阻力
6.5 孔口、管嘴出流 有压管道恒定流
6.6 明渠恒定均匀流
6.7 渗流定律 井和集水廊道
6.8 相似原理和量纲分析
6.9 流体运动参数(流速、流量、压强)的测量
七. 计算机应用技术
7.1 计算机应用技术硬件的组成及功能 软件的组成及功能 数制转换
7.2 Windows操作系统基本知识、系统启动 有关目录、文件、磁盘及其它操作 网络功能注:以Windows98为基础
7.3 计算机程序设计语言程序结构与基本规定 数据 变量 数组 指针 赋值语句 输入输出的语句 转移语句 条件语句 选择语句 循环语句 函数子程序(或称过程) 顺序文件 随机文件注:鉴于目前情况,暂用FORTRAN语言
八. 电工电子技术
8.1 电场与磁场库仑定律 高斯定律 环路定律 电磁感应定律
8.2 直流电路电路基本组件 欧姆定律 基尔霍夫定律 迭加原理 戴维南定理
8.3 正弦交流电路正弦量三要素 有效值 复阻抗 单项和三项电路计算 功率及功率因数 串联与并联谐振 安全用电常识
8.4 RC和RL电路暂态过程三要素分析法
8.5 变压器与电动机变压器的电压、电流和阻抗变换 三相异步电动机的使用常用继电—接触器控制电路
8.6 二极管及整流、滤波、稳压电路
8.7 三极管及单管放大电路
8.8 运算放大器理想运放组成的比例 加、减和积分运算电路
8.9 门电路和触发器基本门电路 RS、D、JK触发器
九. 工程经济
9.1 现金流量构成与资金等值计算现金流量 投资 资产 固定资产折旧 成本 经营成本 销售收入 利润 工程项目投资设计的主要税种 资金等值计算的常用公式及应用 复利系数表的用法
9.2 投资经济效果评价方法和参数净现值 内部收益率 净年值 费用现值 费用年值 差额内部收益率 投资回收期 基准折现率 备选方案的类型 寿命相等方案与寿命不等方案的比选
9.3 不确定性分析盈亏平衡分析 盈亏平衡点 固定成本 变动成本 单因素敏感性分析 敏感因素 9.4 投资项目的财务评价工业投资项目可行性研究的基本内容投资项目财务评价的目标与工作内容 盈利能力分析 资金筹措的主要方式 资金成本 债务偿还的主要方式 基础财务报表 全投资经济效果与自有资金经济效果 全投资现金流量表与自有资金现金流量表财务效果计算 偿债能力分析 改扩建和技术改造投资项目财务评价的特点(相对新建项目)
9.5 价值工程价值工程的内容与实施步骤 功能分析
十. 机械原理
10.1 机械、机构、机器
10.2 机构的结构分析机构的组成 平面机构的机构运动简图 平面机构的自由度计算 机构具有确定运动的条件 计算平面机构自由度时应注意的事项(复合铰链、局部自由度、虚约束)
10.3 机械的摩擦、效率和自锁运动副中摩擦力的确定 机械的效率 机械的自锁
10.4 平面连杆机构及其设计连杆机构及其传动特点 平面四杆机构的类型和应用 平面四杆机构的基本知识(有曲柄的条件、急回运动和行程速比系数、传动角和死点) 平面四杆机构的设计(用作图法设计四杆机构)
10.5 凸轮机构及其设计凸轮机构的应用和分类 推杆的常用运动规律 用作图法进行平板凸轮轮廓曲线的设计(对心移动从动件) 滚子半径选取的原则 压力角与基圆半径的关系
10.6 齿轮机构及其设计齿轮机构的应用及分类 轮廓曲线 渐开线齿廓的啮合特点 渐开线标准 直齿圆柱齿轮的基本参数和几何尺寸 渐开线直齿圆柱齿轮的啮合传动 渐开线直齿圆柱齿轮的变位及变位齿轮传动的类型 斜齿圆柱齿轮传动(基本参数与几何尺寸计算、正确啮合条件) 蜗杆传动(特点、主要参数及几何尺寸) 直齿锥齿轮传动的几何参数和尺寸计算
10.7 齿轮系及其设计齿轮系及其分类 定轴轮系的传动比 周转轮系的传动比 复合轮系的传动比 轮系的功用
10.8 机械的平衡回转件的静平衡 动平衡
十一. 机械设计
11.1 机械设计的主要内容 设计机器的一般程序
11.2 螺纹连接螺纹 螺纹牙的类型和紧固件 螺纹连接的预紧和防松 螺纹连接的强度计算 螺栓组连接的设计计算 紧固件的性能等级及许用应力
11.3 挠性传动带传动的类型 V带的类型与结构 带传动的受力分析 V带传动的设计计算 链传动的特点及应用 滚子链的结构 链传动的运动特性 链传动的受力分析
11.4 齿轮传动特点 失效形式 设计准则 计算载荷 常用材料及其选择原则 标准直齿圆柱齿轮传动的强度计算、设计参数、许用应力与精度选择 标准斜齿圆柱齿轮的受力分析
11.5 蜗杆传动特点 失效形式 受力分析 设计准则 常用材料 普通圆柱蜗杆传动的主要参数、几何尺寸计算、传动效率、润滑和热平衡计算
11.6 滑动轴承滑动摩擦的类型及其特点 滑动轴承的失效形式 常用材料及润滑剂选择 普通径向滑动轴承的主要结构型式 轴瓦结构与设计计算
11.7 滚动轴承基本结构 主要类型 代号和使用性能 滚动轴承类型的选择、尺寸的选择(承载能力与寿命) 滚动轴承装置(支撑结构)的设计
11.8 联轴器和离合器主要类型 特点 选用原则
11.9 轴与轴毂连接轴的分类与材料 轴的强度计算(按扭转强度计算,按弯扭合成强度计算) 轴的结构设计 平键和花键连接的类型、特点及强度校核
11.10 弹簧类型 应用
十二. 工程材料及机械制造
12.1 金属材料的主要力学性质
12.2 铁碳合金相图及其应用
12.3 金属塑性变形的微观机制及对金属组织的性能的影响 再结晶对冷变形金属组织和性能的影响
12.4 钢在热处理过程中的组织转变及组织的形态和性能 常用热处理工艺及应用
12.5 金属材料的表面处理技术及应用
12.6 常用钢材、铸铁的牌号、性能及应用
12.7 常用铝合金、铜合金、轴承合金的牌号、性能及应用
12.8 常用工程塑料、合成橡胶、工程陶瓷、复合材料的性能及应用
12.9 工程材料的选用原则和一般步骤
12.10 合金的铸造性能及其对铸件质量的影响
12.11 铸钢、铸铁及铸铝件生产的过程和特点
12.12 砂型铸造的主要工序和场用设备 砂型铸造浇筑位置和分型面的选择 金属型铸造、压铸及熔模铸造的特点和选用
12.13 金属锻造性能及其影响因素
12.14 自由锻和锤上模锻的特点及其工艺过程 其它模锻方法的特点
12.15 板料冲压的特点、工艺过程及应用
12.16 焊接冶金过程及其对焊接质量的影响 焊接热过程对焊接接头组织、性能的影响
12.17 金属材料的焊接性 常用金属材料焊接方法及相关焊接材料的选用
12.18 常用焊接接头和坡口的形式 焊缝布置的主要原则 焊接结构的工艺性
12.19 常用机械零件毛坯的特点及选用原则
12.20 机械加工机械加工过程 零件表面的形成与切削运动 切削要素 工件装夹 定位原理
12.21 机床与夹具金属切削机床的分类、特点、应用及主要技术参数 数控机床的特点及应用 机床夹具的组成、分类及应用
12.22 金属切削原理金属切削过程 常用刀具材料 刀具几何角度 切削力 切削热 刀具磨损 刀具寿命 切削用量及其选择
12.23 机械加工精度与表面质量机械加工精度及其影响因素 机械加工表面质量及其影响因素 提高机械加工精度和表面质量的措施
12.24 机械加工工艺规程常用机械加工方法及可达到的经济精度 机械加工工艺规程编制的步骤和方法 机械加工工艺规程编制的主要问题 加工余量及工序尺寸的确定 工时定额
12.25 机械装配常用机械装配方法特点及应用规范
12.26 特种加工常用特种加工方法的原理、特点及应用
十三. 机械工程控制
13.1 反馈概念 系统的分类 对控制系统的基本要求
13.2 机械系统的模型系统的微分方程 系统的传递函数 传递函数方框图及其简化 反馈控制系统的传递函数
13.3 时间响应时间响应及分析方法 典型输入信号 一阶系统 二阶系统 系统误差分析
13.4 频率特性频率特性及其图示方法 闭环频率特性 频率特性的特征量
13.5 系统的稳定性系统稳定性 劳斯稳定判据 乃奎斯特稳定判据 伯德稳定判据
十四. 热工
14.1 热能转换的定律热力系 状态及状态参数 平衡状态 状态方程 准平衡态过程与可逆过程 功与热量 热力循环热力学第一定律 闭口系统能量方程 稳定流动系统能量方程及其应用热力学第二定律 卡诺循环及卡诺定理 熵 孤立系统的熵增原理 能量的品质和能量贬值原理
14.2 工质的热力性质和热力过程物质的三态及相变过程 理想气体的热力性质和热力过程 蒸汽的热力性质和热力过程 湿空气及其热力过程 理想气体混合物
14.3 热量传递导热 稳态导热的计算 非稳态导热对流换热 自然对流换热及其实验关联式 强迫对流换热及其实验关联式凝结和沸腾时的对流换热辐射换热的定律 黑体间的辐射换热和角系数 灰体间的辐射换热
十五. 测试技术
15.1 信号分析信号与信息 信号分类 周期信号、非周期信号和随机信号的时域和频域特征
15.2 工程中常用传感器的转换原理及应用
15.3 测试装置测试装置的静态响应特性和动态响应特性 不失真测试的条件 测试装置对典型输入信号的响应
15.4 电桥转换原理 信号的调制与解调 滤波器原理 模/数和数/模转换原理
15.5 信号分析仪及微机测试系统 虚拟仪器及工程应用
15.6 典型非电量参量的测量方法位移 速度 加速度 噪声 温度 压力测量
十六. 职业法规
16.1 我国有关基本建设、建筑、环保、安全及节能方面的法律与法规
16.2 工程设计人员的职业道德与行为规范
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。