1.通风风管怎样计算工程量

2.空调冷热水系统的设计步骤知识点分析?

3.空调计费系统的计费方式

4.中央空调水系统管径计算方法

5.空调水管道工程量计算

6.空调管的进水和回水是什么意思?

风机盘管及空调水的计算方法_风机盘管水量计算

空调冷水机组包括蒸发器冷冻水和冷凝器冷却水

1、冷却水流量:一般按照产品样本提供数值选取,或按照如下公式进行计算,公式中的Q为制冷主机制冷量

L(m3/h)= [Q(kW)/(4.5~5)℃x1.163]X(1.15~1.2)

2、冷冻水流量:在没有考虑同时使用率的情况下选定的机组,可根据产品样本提供的数值选用或根据如下公式进行计算。如果考虑了同时使用率,建议用如下公式进行计算。公式中的Q为建筑没有考虑同时使用率情况下的总冷负荷。

L(m3/h)= Q(kW)/(5)℃x1.163

3、冷却水补水量一般1为冷却水循环水量的1~1.6%.

空调末端风机盘管流量按设备冷负荷计算,公式同冷冻水流量。

通风风管怎样计算工程量

风机盘管给、排水管径是根据:1、风机盘管(制冷量大小)决定末端管径。2、一个支路上有多少个风机盘管和距给水总管的远近来决定支管的管径。3、由各支管的流量决定总管的管径。4、同时也要考虑线路的长短,弯角大小和多少的因素

空调冷热水系统的设计步骤知识点分析?

通风管道工程量的计算规则

1、面积按展开计算;周长乘以长度等于面积,例如500*400长1000mm (0.5+0.4)*2*1=1.8平米,异径管通常按照管径比较大的一头计算。

2、风管长度按中心线长为准,但不包括部件所占长度。

3、风管导流片,按图示叶片的面积计算。

4、软管按图示尺寸以平方米计算。

扩展资料

风管主要应用在工业及建筑工程中,应用领域主要涉及:电子工业无尘厂房净化系统,医药食品无菌车间净化系统,酒店宾馆、商场医院、工厂及写字楼的中央空调系统,工业污染控制用除尘、排烟、吸油等排风管、工业环境或岗位舒适用送风管、煤矿抽放瓦斯用抽放瓦斯系统、煤矿矿井环境控制用送回风系统...等等;PS:常被、动漫中开发成逃生及潜入专用路线。

按用途区分

1、净化空调系统用风管:镀锌板、不锈钢;(使用中可能出现尘源污染的玻璃钢、复合材料禁用)

2、中央空调系统用风管:镀锌板、彩钢保温板;(可使用玻璃钢、复合材料)

3、环境控制系统用风管:镀锌板、不锈钢;(可使用塑料、玻璃钢、复合材料)

4、工业通风系统用风管:钢板、镀锌板;(丽博通风管.可使用塑料、玻璃钢、复合材料)

注:玻璃钢风管可分有机、无机二种,根据设计规范有消防要求的禁用有机材质;

5、特殊使用场合用风管:矿用涂胶布风筒、矿用塑料通风管;(要求阻燃抗静电矿用安全特性)

百度百科-通风风管

空调计费系统的计费方式

一、选择冷|热水系统的形式

1、空调水系统的形式

A、双管制和四管制系统

对任一空调末端装置,只设一根供水管和一根回水管,夏季供冷水、冬季供热水,这样的冷(热)水系统,称为双管制系统;

对任一空调末端装置,设有两根供水管和两根回水管,其中一组供回水管用于冷水系统,另外一组用于热水系统,这样的冷(热)水系统,称为四管制系统。

B、闭式和开式系统

闭式系统的水循环管路中无开口处,而开式系统的末端水管是与大气相通的。开式系统使用的水泵,除要克服管路阻力损失外,还需具有把水提升到某一高度的压头,因此,要求有较大扬程,相应的能耗也较大。闭式系统管路系统不与大气相通,水泵所需扬程仅需克服管路阻力损失,不需涉及将水位提高所需的位置压头,因此,所需扬程较开式小,相应的能耗也小,并且管路和设备受空气腐蚀的可能性也小。

C、异程式和同程式系统

风机盘管设在各空调房间内,按照起并联于供水干管和回水干管间的各机组的循环管路总长是否相等,可分为异程式和同程式系统。

异程式管路系统配置简单,省管材,但各并联环路管长不等,因而阻力不等,流量分配难以均衡,增加了初次调整的难度。同程式各并联环路管长相等,阻力大致相等,流量分配也较均衡,可减少初次调整的难度,但初投资较高。

D、定水量和变水量系统

定水量系统中的系统水量是不变的。它通过改变末端装置的供水量来调节空调房间的负荷变化。各空调末端装置或各分区水量,用手设在空调房内感温器控制的电动三通阀进行调节。

变水量系统则保持空调水系统供、回水的温度不变,通过改变水系统的水流量来适应空调负荷的变化,这种系统各空调末端装置的水流量收设在室内的感温器控制的电动二通阀进行调节,目前用变水量调节方式的较多。

因为变水量系统负荷处于变化状态,建议在中央机房内的供回水管之间设置旁通管,并设置压差电动调节阀。

此外,无论是定水量还是变水量系统,空调末端设置除设自动控制的电动阀外,为了维修方便,前后两边必须设置截止阀,或增加旁通装置。

E、单式水泵系统和复式水泵系统

以中央机房的供回水集管为界,冷热源侧和负荷侧共用水泵的,

叫单式水泵系统;冷热源侧和负荷侧分别设置水泵的,叫复式水泵系统,也叫二次泵系统。

2、空调水系统形式的选择与分区

A、一般建筑物的舒适性中央空调,其冷(热)水系统宜用单式水泵、变水量调节、双管制系统,并尽可能为同程式或分区同程式。

B、舒适性要求很高的建筑物可用四管制系统。

C、高层建筑,特别是超高层建筑,在每层供水半径不大时,常用竖向总管同程式,水平异程管式。

D、如果全系统只设置一台空调主机时,宜用定水量系统;设置多台主机时,则考虑用变水量系统。

E、大型建筑中一般情况宜用单式水泵系统,但若各分区负荷变化规律不一,或各分区供水环路阻力相差大,或使用功能及运行时间不一,或供水作用半径相差悬殊等情况,均宜用复式水泵系统。

二、冷|热水系统水管管径的确定

空调水系统的管材有镀锌钢管和无缝钢管。当管径DN≤100mm时,可用镀锌钢管,其规格用公称直径DN表示;当管径DN>100mm时,可用无缝钢管,其规格用外径*壁厚表示。常用钢管规格如下表(直径、壁厚单位mm,质量单位kg/m):

常用钢管规格表

注明:镀锌管比不镀锌钢管重3~6%左右。

管径计算公式一

dn=1.13 * 对应管段水流量(立方米/秒)除以水流速(米/秒)的商的平方根;

管径计算公式二

dn=0.48 * 对应管段冷量(冷吨)的平方根。

参考表格如下:

管内水的最大允许水流速

冷冻水管速算表

水系统的管径和单位长度阻力损失

三、供、回水集管的设计

供水集管又称为分水器(分水缸),回水集管又称为集水器(回水缸),

它们都是一段水平安装的大管径钢管。各台冷水机组(或热水器)生产的冷(热)水送入分水器,再经分水器,向各子系统或各区分别供水;各子系统或各区的空调回水,先回流到集水器,然后再由水泵送入各冷水机组(或热水器)。分水器和集水器上的各管路均应设置调节阀和压力表,底部应设排污管和排污阀(一般选用DN40)。

分水器和集水器的管径,按其中水的流速为0.5~0.8m/s的范围内确定。分、集水器的管长由所需连接的管接头个数、管径及间距确定。两相邻接头中心线间距宜为两管外径+120mm;两边管接头中心距管端面宜为外径+60mm。

四、水头损失计算

流体在管道内运行阻力损失包括两部分,即沿程阻力损失和局部阻力损失。

管路的水头损失(mH2O)=各管段沿程阻力损失之和(mH2O)

+各管段局部阻力损失之和(mH2O)

1、沿程阻力计算方法

A、近似估算

P(mH2O)= 0.025*(L/d)*V2/2g

L:管路长度,m;

d:管道直径,m;

V:管道内水流速,m/s.

B、 按水力坡降计算

P(mH2O)= I * L mH2O

I:水力坡度,即单位管长的水力损失mH2O /m;

L:管路长度,m。

对旧钢管和铸铁管的水力坡度:

当V≥1.2m/s时,I=0.00107*V2/d1.3 mH2O /m

当V<1.2m/s时,I=0.000912*V2/d1.3 *(1+0.867/V)0.3 mH2O /m

d:管道计算内径,m;

V:管道内水流速,m/s.

2、局部阻力计算方法

A、常用计算公式

P(mH2O)= 局部阻力系数(可查表)* V2/2g

V:管道内水流速,m/s.

B、 按水力坡降计算

P(mH2O)= I * L mH2O

I:水力坡度,即单位管长的水力损失mH2O /m;

L:局部阻力当量长度,m。

各种局部阻力损失折合当量长度表

五、冷|热水泵的配置与选择

每台空调主机至少应该配置一台水泵,一般要考虑备用泵,以备维修之用。一般空调水系统的水泵与机组连接方式是用压入式(对机组而言),只有在水泵的吸入段有足够的压头才能防止水汽化。水泵通常选用比转数N在30~150的离心式清水泵。

1、水泵流量的确定

水泵的流量计算式如下:

V=β1*V1m3/s

式中:β1------流量储备系数,当水泵单台工作时,β1=1.1,当两台并联工作时,β1=1.2;

V1------冷水机组额定流量,m3/s。

2、水泵扬程的确定

水泵的扬程计算式如下:

H=β2*HmaxmH2O

式中:β2------扬程储备系数,一般β2=1.1;

Hmax------水泵所承担的供回水管网最不利环路的水压降,mH2O。

最不利环路的总水压降Hmax可按下式计算:

Hmax=P1+P2+P3mH2O

式中:P1------冷水机组蒸发器的水压降,mH2O,可从产品样本中查知。(参考换算1KPa=0.1mH2O)

P2------环路中并联的各台空调末端装置中最大的水压降,mH2O,可从产品样本中查知。

P3------环路中各种管件的水压降与沿程压降之和,mH2O,可从产品样本中查知。

在估算时,可大致取每100米管长的沿程损失为5mH2O。

这样,最不利环路的总长(一般为供回水管长度之

和为L,则最不利环路的水压降可按下式估算:

Hmax=P1+P2+0.05(1+K)*LmH2O

式中:P1、P2同上

K为最不利环路中局部阻力当量长度总和与该环路管道总长的比值。当最不利环路较短时,取K=0.2~0.3;当最不利环路较长时,取K=0.4~0.6。

六、膨胀水箱的配置与选择

闭式水系统,为容纳水系统内水的热胀冷缩的变化和补充系统的渗漏水,应该设置膨胀水箱。膨胀水箱一般设置在高出水系统最高点的2~3米处,且一般连接在水泵的吸入侧。膨胀水管应该具备通气管、溢流管、信号管、排污管、膨胀管、补水管、循环管总共7个管口。

空调水系统的膨胀水量V可按下式计算:

V=(1/ρ1-1/ρ2)*V’L

式中:ρ1------系统运行前水的密度,kg/l;

ρ2------系统运行后水的密度,kg/l;

V’------系统中水总容量,l;V’=VF*F

F------为建筑总面积,m2;

VF------水容量概算值,L/m2

参考用表:

水的密度

水系统中水容量概算值VF(L/m2)

更多关于工程/服务/购类的标书代写制作,提升中标率,您可以点击底部客服免费咨询:s://bid.lcyff/#/?source=bdzd

中央空调水系统管径计算方法

一、前言:

中央空调一般是以水为介质,将能量在用户末端和能量中心进行交换以实现集中供冷(或供热)的空气调节系统。集中供能分散使用是中央空调区别家用空调的主要特征。既然中央空调是集中供能和分散使用,如果分散使用的付费主体不同,就要涉及到费用分摊的问题,故本文着重对中央空调的几种计费方式进行探讨.

中央空调最简单的收费方式是按面积分摊或包干,它源于经济中集中供暖时的暖气收费,这也是最浪费能源和最不公平的收费方式,因其与市场经济规则的背离,导致收费矛盾激化时有发生。对中央空调实行分户计量、按量收费,充分体现“谁消费谁出钱”和“用多少能源出多少钱”的能源商品化的基本属性,具有以下意义:

1、分户计量、按量收费,公平合理!

2、促使用户主动节能,培养节能习惯,利国利民!

3、降低运行费用,延长主机寿命,实现业主与物业共赢!

4、实现系统的主动、被动节能,提高物业管理水平。

能量“商品化”,按量收费是市场经济的基本要求。中央空调要实现按量收费,必须有相应的计量器具和计量方法,按计量方法的不同有以下几种方式:

1、直接计量“水土不服”

直接计量形式的中央空调计量器具主要是能量表。目前,大家了解到的中央空调的计量只有在近二年暖气计量中发展起来的能量表这一种计量器具。因暖气的巨大温差与中央空调小温差存在较大差别,所以计量暖气用的能量表(精确度3-95℃)不能满足中央空调的计量精度(0.5℃)要求。并且能量表成本太高(最小型号DN20的就在1000元左右),应用中需要对空调系统设计作出变更,安装中易造成测温不准引起人为误差,对中央空调系统的水质要求较高,使用中容易发生脏堵,受潮等故障,这些都不利于能量表的应用推广。

根据能量守恒原理,中央空调对空间的热交换量与其介质中的能量变化量相等,能量表就是通过直接计量中央空调介质(冷冻水)的能量变化量来实现对中央空调的量化的,其工作原理是依据物质的热交换能量计算热力学公式Q=∫cΔTV=∫c(T2-T1)qt。(能量表)由带信号输出的流量计、两只温度传感器和能量积算仪三部分组成,它通过计量中央空调介质(冷冻水)的某系统内瞬时流量、温差,由能量积算仪积分计算出系统的热交换量。

这种中央空调计费方式原理明确,结果直观,易于理解。由于它要计量多个参数,特别是中央空调系统的大流量小温差环境,对能量表的温差的精度要求较高,所以其生产成本较高,同时改变中央空调的系统设计和要求水质,普遍用受到制约,主要用在分层、分区的中央空调计费上。

有些热量表生产厂商将其暖气表的能量积算仪上加“取正”功能后就认为可以用在中央空调的计费上,这是一种误解。暖气和中央空调计量原理虽相同,但实际应用环境不一样:暖气是通过调节水流量来调节热交换量的,属小流量、大温差环境,其进、回水温差在35℃左右,对流量精度要求较高而温差精度要求较低,所以热量表标准温差精度在3-95℃;中央空调未端是定流量,小温差系统,它是通过调节风速来改变热交换面积,从而达到调节热交换量之目的!因此其对流量精度要求较低而温差精度较高,因中央空调的进、回水标准温差是5℃,如果允许1℃的误差,在一个装有6台风机盘管的家庭开一台时,已不能满足计量要求。因此用于中央空调计费的能量表温差精度应在1℃以下。现在暖气热量表温差精度多在2-3℃,价格已在千元,要其达到计量中央空调的温差精度成本将更高。所以,目前以能量表来实现中央空调的计费技术虽比较成熟,但其应用成本太高而并未被商家看好和消费方接受。

2、用水表、电表进行中央空调计量收费的方式是不合理的!

在中央空调直接计费因价格高昂和应用不便而无法为用户所接受,又出现了一些看似简单、便宜的间接计费方法。比如:电表计费,水表计费等。

电表计费就是通过电表计量用户的空调末端的用电量作为用户的空调用量依据来进行收费的;如按电表计量收费:中央空调系统中的制冷主机、水泵、管道均可不装!只要有电,用户打开室内风机盘管,就必定计量收费!能量中心的空调主机即使不运行或干脆没有空调主机,只要用户空调末端打开都有计费,

热水表计费就是通过热水表计量用户的空调末端用水量作为用户的空调用量依据来进行收费的,按此方法:中央空调系统中只需配备水系统的水泵、管道、室内风机盘管就行了,什么制冷主机、风机盘管电源都可以不用,启动水泵热水表就有计量收费!

因此,无论水表、电表进行中央空调的计量收费,都不能真正反应空调“量”的实质,中央空调的要计的“量”是消耗的能量(热交换量)的多少,出现这种显然是不合情理的荒诞结果也是必然现象。

3、未端开关时间计费法没能保证 “时间量”与中央空调“冷量”的必然联系,重蹈水表计费、电表计费的覆辙

在水表计费、电表计费这一明显不合情理且又无奈之中不得不暂时用的情况下,寻找一种符合国内中央空调应用情况且又经济实用的中央空调计量收费方法成为行业内的有识之士的不懈追求,按人们最熟悉的时间收费似乎是一种最佳方案,然而找出时间与中央空调“量”与“质”的关系中,一些电子行业出身的人士却失之简单,没有抓住中央空调“量”的实质,计量的仅仅是中央空调未端风机盘管开关的时间量,却不能实质保证这种“时间量”与中央空调“冷量”的必然结果,按这种“时间量”进行中央空调收费又回到了只要运行风机盘管,没有主机或系统就计量收费的怪事!落到与水表计量、电表计费同样的境地,这也就不用奇怪为什么国家计量主管部门只给这些厂家颁发“计时器”的《制造计量器具许可证》而不是中央空调计费系统的!(因为其执行的就是《电子时钟计时器器标准》)

4、当量能量计量法 中央空调要计量的“量”既不是水量,也不是电量,更不是时间量,而是中央空调介质水中携带的能量(冷量或热量)的变化量--CFP系列中央空调计费系统能经国家计量主管部门批准的原因是:

中央空调计量收费就是将中央空调的“能量”商品化,而商品的价格取决于商品内在的“质”和外在的“量”,而〖水表、电表、未端开关时间计费法〗计费方式只计量了中央空调末端的外在的“量”,却忽略了中央空调内在的“质”, 用户的空调未端使用“用电量”、“用水量”或“开关时间量”并不等于用户所消耗的“用冷量”,所以出现了不合情理的结果,必然造成收费纠纷;因而这些中央空调计费方式被市场所淘汰也在情理之中。

CFP系列中央空调计费系统(有效果计时型)根据中央空调的应用实际情况,首先检测中央空调的供水温度,只有在供水温度大于40℃(暖)或小于12℃(制冷)情况下才计时(确保中央空调“有效果”),然后检测风机盘管的电动阀状态(无阀认为常开)和电机状态(确保用户在“使用”)进行计时(计量的是用户风机盘管的“有效果”使用时间),但这仅仅是一个初步数据,还得利用计算机技术、微电子技术、通讯技术和网络技术等,通过计费管理软件以这些数据为基础进行合理的计算得出“当量能量”的付费比例,才能作为收费依据。

CFP系列中央空调计费系统是最新一代以风机盘管为计费对象的中央空调计量器具,它是郑州春泉暖通节能设备有限公司首创的“有效果” 计费原则和“时间计费”法的结晶,包括CFP计费器、CRS485-D区域管理器、CJ-Wxp管理软件和CJ-3000计费主机四部分。

根据物质的热交换能量计算热力学公式Q=∫cΔTV=∫c(T2-T1)qt,中央空调风机盘管的流量q基本是定值,时间t我们可以通过计时器计量,温差(T2-T1)是技术的关键点。物质的热交换有传导、对流和辐射三种方式,中央空调风机盘管的热交换主要是通过传导来实现的,不存在对流,并且辐射也可忽略不计,传导量与温差和换热面积成正比,风机盘管的换热面积又与风量v成正比。在标况(供水温度T1=7℃;回水温度T2=12℃)下,中央空调风机盘管的热交换量计算公式Q=∫cΔTV=∫c(T2-T1)qt可变为Q=∫Xvt,(v:风速系数;X:型号能力系数;t:使用时间)。根据模糊理论,我们将供水温度T1≤12℃(制冷)或T≥40℃(暖),基本能满足用户正常使用要求的情况作为有效计量收费;供水温度T1>12℃空调使用效果较差的时间作为损耗进入成本,不收取用户费用,这就是“有效果”计费原则。通过计量中央空调风机盘管各档位在“有效果”条件下的运行时间(阀开档位运行的时间)按W=∑Pi*ti计算出每一台风机盘管消耗的当量能量,当量能量单价等于总成本除以计量出的总当量能量,这样每一个用户的应交纳的中央空调费用就可以按消耗的当量能量乘以单价得出。就如1KW的电炉,用1小时就是1度电,但其前题是电压在220V±5%范围内,这个±5%就是基本能满足用户正常使用要求的“有效果”范围,如果电压超过±5%这一范围,用户电器就没法正常工作。

CFP系列中央空调计费系统不仅计量了中央空调的“量”(用户使用时间),关键在于计量的是中央空调的“质量”(有效果时间)!较好的解决了中央空调计费的合理性,确保作为商品的中央空调“用冷量”具有实用性,满足用户正常使用要求,较好的保障了用户的权益;同时其将供水温度T>12℃或T<40℃,空调使用效果较差的时间作为损耗处理,费用计入中央空调运行成本,符合物业管理收费原则。

CFP系列中央空调计费系统具有良好的适用性,对于中央空调系统的设计、安装无任何特殊要求,较小的投资成本满足了用户的需求,已广泛应用于以风机盘管为末端的住宅楼、写字楼中。该系统具有对用户的空调进行计费、查询、欠费禁用等管理功能。

关于CFP系列中央空调计费系统的误差影响因素主要是中央空调系统的水流不平衡和风机盘管的换热功率偏差不一致,而这一部分正是我们的中央空调设计人员的进行专业设计的核心内容。CFP型中央空调计费方式是间接计量、当量分摊机制实现中央空调的计量收费的!CFP系列中央空调计费系统的计费误差经过系统内二次分摊后已达到中央空调计量精确度要求。2002年CFP系列中央空调计费系统取得国家计量器具型式批准和计量生产许可证,是国内第一个经国家主管部门批准中央空调专用计量器具。

二.总结

综上所述,值得推荐的两种计量方式为直接能量计量(能量表)和CFP当量能量计量,又根据它们的特点不同,前者适用于分层、分区等大面积计量,后者适用于办公楼、写字楼、酒店、住宅楼等小面积计量。

管理建议

作为涉及到公平合理的,列入国家许可证管理体制的计量器具,主管部门应该依据《计量法》、〈产品质量法〉、〈消费者权益保护法〉等国家现行法律体制下加强监管和处罚力度,引导市场沿正确轨道发展。作为楼盘开发商或系统集成商在选用这类产品时应注重以下几个方面:

1、查验厂家资质,特别是计量许可证,看其是否有计量许可证及其内容是否为中央空调计量器具,

2、拒绝替代计量器具,对用户和自己负责。

3、查验计量标准看其是否达到计量要求。

空调水管道工程量计算

管径计算公式如下:

Q(L/s):管段内流经的水流量

d(mm):管道内径

v(m/s):定的水流速

目前设计软件都能直接计算出管径,在水系统中,管内水流速一般按推荐值选用经试算确定其管径。

如果是计算出来的就按照600KW*同时使用系数来确定室外机功率,也就是600KW*0.8=480KW,室内末端选型参照一般我选型是按照设备样板打0.8折左右的修正选型,水管管径按所有末端合计的流量、流速、冷量确定。

扩展资料

关于冷凝水管的选择

每1KW的冷负荷每小时产生约0.4~0.8公斤左右的冷凝水,在潜热负荷较高的场合每1kW冷负荷每1h约产生0.8kg。冷凝水通常可以根据机组的冷负荷Q(kW)按下列数据近似选定冷凝水管的公称直径。

风机盘管机组、整体式空调器、组合式空调机组等运行过程中产生的冷凝水,必须及时予以排走。

空调管的进水和回水是什么意思?

空调水管的布置可分为同程和异程,在系统较大的时候用同程,小系统对水力平衡要求不严格的时候用异程。同程和异程详见暖通空调设计,同程一般有3个管道不包括冷凝水管,异程一般2根管道不包括冷凝水管。管径的大小是需要通过计算,根据该管道该段所需要承担负荷来确定。比如一台风机盘管只需要DN25就够了,但是10台风机盘管估计就得需要DN50的管道。

进水和回水是根据水流方向来定义的,水流从中央空调蒸发器出来到室内盘管或空调箱这段管道叫出水管,从空调箱或风机盘管出来回到中央空调蒸发器的这段管叫回水管,故名思义进水和回水就很简单了。

空调管的“进水”和“回水”是相对于描述对象而言的;

比如,对风机盘管来说,下进上出,下面的一个管口接进水管,上面的一个管口接出水管。

二对于与之相连的冷水机组来说,则正好反过来,风机盘管的进水管是冷水机组的出水管。

扩展资料:

价格便宜、耗电量低,在酷暑难耐的盛夏,这两个优点,足以成为“水空调”代替分离式空调的理由。“水空调”是一种利用地下水来降低室内温度的空调。它的原理很简单,就是把水从井里抽出来,然后用风扇把水的冷气吹出来,使用过后的水会从另一个管子直接排到下水道里。

典型中央空调机组主要由冷冻水循环系统、冷却水循环系统及主机三部分组成:

1、冷冻水循环系统

该部分由冷冻泵、室内风机及冷冻水管道等组成。从主机蒸发器流出的低温冷冻水由冷冻泵加压送入冷冻水管道(出水),进入室内进行热交换,带走房间内的热量,最后回到主机蒸发器(回水)。室内风机用于将空气吹过冷冻水管道,降低空气温度,加速室内热交换。

2、 冷却水循环部分

该部分由冷却泵、冷却水管道、冷却水塔等组成。冷冻水循环系统进行室内热交换的同时,必将带走室内大量的热能。该热能通过主机内的冷媒传递给冷却水,使冷却水温度升高。冷却泵将升温后的冷却水压入冷却水塔(出水),使之与大气进行热交换,降低温度后再送回主机冷凝器(回水)。

3、 主机

主机部分由压缩机、蒸发器、冷凝器及冷媒(制冷剂)等组成,其工作循环过程如下:

首先低压气态冷媒被压缩机加压进入冷凝器并逐渐冷凝成高压液体。在冷凝过程中冷媒会释放出大量热能,这部分热能被冷凝器中的冷却水吸收并送到室外的冷却塔上,最终释放到大气中去。

随后冷凝器中的高压液态冷媒在流经蒸发器前的节流降压装置时,因为压力的突变而气化,形成气液混合物进入蒸发器。冷媒在蒸发器中不断气化,同时会吸收冷冻水中的热量使冷冻水达到较低温度。最后,蒸发器中气化后的冷媒又变成了低压气体,重新进入了压缩机,如此循环往复。

参考资料来源:百度百科-中央空调水系统