1.浅谈空调水系统的设计与施工?

2.如何计算循环水泵扬程?

3.风机盘管的出风温度是由什么决定的,受什么影响?是否有相关公式?谢谢

4.风机静压是什么

5.暖通空调设计常见知识点问题汇总及解决?

风机盘管阻力估算_风机盘管系统水阻力计算

暖基础知识

1.基本概念:

暖系统:冬季向室内供热保持室内所需温度的建筑设备叫做暖系统。暖系统由热源或供热装置、散热设备及供热管道组成。输送热量的物质或带热体叫做热媒,一般用水和蒸气做为热媒。热媒在热源获得热量通过供热管道输配到各个用户或散热设备,由散热设备把热量发散到室内。中热源是燃气壁挂炉,热媒为热水,散热设备是通过不同管道布置形式连接的散热器、地板辐射加热管或风机盘管。壁挂炉内水泵作为机械循环的强制动力。

围护结构:建筑物及房间各面的围挡物,如墙体、屋顶、地板和门窗等。分内、护结构两类。壁挂炉暖系统多用于住宅,外墙、屋顶和外门窗为护结构,内墙、隔墙为内围护结构。在进行暖热负荷计算时,需要考虑护结构及相邻房间温差大于5.C的隔墙的耗热量和得热量。

暖热负荷:为维持暖房间室内温度达到设计要求标准时,根据暖房间围护结构的耗热量和得热量的平衡计算结果,需要暖系统供给的热流量。

2.基本计算:

A.暖设计温度参数选择:

a. 暖室外计算温度tW:各地区用不同计算温度,参见规范规定。

b.暖室内计算温度tn: 卧室18 .C或20 .C;卫生间(带浴室)25 .C;厨房14 .C或16.C。

c. 暖系统供回水温度:

对于壁挂炉暖系统,根据散热设备不同,取不同供回水温度。

散热器系统:供水温度(tg)85 .C或80 .C ,回水温度(th)65 .C或 60 .C

地板辐射系统:供水温度(tg)≤60 .C,供回水温差宜小于或等于10.C。

风机盘管系统:供水温度(tg)65 .C 或60 .C, 回水温度(th)55.C或 50 .C

B.常用工程单位换算(见热工基础知识部分)

根据不同地区暖室外计算温度tW及不同功能房间的暖室内计算温度tn,暖热负荷可以由暖面积平均热指标及暖面积进行估算。同时要考虑暖房间护结构的朝向及墙体的节能保温情况及相邻房间的暖情况。当暖室外计算温度低,房间暖室内计算温度高,相邻房间不暖,外墙朝向为北向且保温性能差时,需取较大的暖面积平均热指标。

根据《民用建筑节能管理规定》,新建居住建筑护结构已考虑节能保温措施,不同地区暖面积平均热指标须根据当地气象条件确定。对于北方地区主导风向为西北,南向及外墙少的房间热指标较小,东向房间稍多,西北向及外墙多的房间最大。

简化计算公式:

暖热负荷Q(W)=暖面积(m2 ) x面积热指标(W/ m2)。

C.暖系统水流量计算:

G=0.86Q/△t

G—流量 kg/h

Q—热负荷 w

△t—供回水温差 tg-th .C

D.暖系统阻力计算:

水系统中阻力损失包含局部阻力损失及沿程阻力损失两部分,简化公式为:

△P=(1+a)△Pm∑l

△P— 管段总阻力损失 Pa ; △Pm— 沿程阻力损失 Pa/m ;

∑l — 最不利环路长度 m ; a — 局部阻力占沿程阻力的百分数

机械循环热水系统中,室内暖管道沿程阻力损失取80~120 Pa/m,局部阻力百分数取0.5~1,散热器系统与风机盘管系相比较局部阻力百分数取值较小,具体数值视系统复杂情况而定。

低温热水地板辐射暖系统的阻力应计算确定

丹佛斯暖(河南省美腾机电总代理)

浅谈空调水系统的设计与施工?

摘要:风机盘管是中央空调系统的末端产品,它主要是通过机组内不断的再循环所在房间的空气,使空气通过冷水(热水)盘管后被冷却(加热),进而调节室内的温度。市场上的风机盘管型号有很多,不同的符号代表不同的意义。消费者选购时,要考虑好使用环境循环风量、冷负荷、阻力等问题,接下来就和小编一起来看看吧。风机盘管型号参数代表什么意思

风机盘管型号一般为FP—123456,不同的符号代表不同的意义,其中FP为产品名称,即风机盘管。下面进行简单说明:

1、“1”是指额定风量,国标型号后数字×10/h表示。

2、“2”是指结构形式,卧式用W表示,立式用L,卡式用K,壁挂式BG,立柱式LZ。

3、“3”是指安装形式,暗装A表示,明装M表示。

4、“4”是指风箱,不带回风箱无表示,带回风箱用G。

5、“5”是指进水方位,左进水用Z表示,右进水用Y表示

6、“6”是指用途特征,标准型无代号,余压型用H加数字表示。

如何选择风机盘管

1、依据使用环境循环风量选择

循环风量是房间面积、层高(吊顶后)和房间换气次数三者的乘积即为房间的循环风量。依照循环风量对应风机盘管最高速风量,即可确定风机盘管型号。

2、依据房间所需的冷负荷选择

根据单位面积负荷和房间面积,可得到房间所需的冷负荷值。利用房间冷负荷对应风机盘管的高速风量时的制冷量,即可确定风机盘管型号。

3、结合风系统的阻力选择

在选购风机盘管的时候,还需要结合风系统的阻力来进行计算,虽然一般的风机盘管的空调系统的风系统的规模很小,同时组成也相对简单,因而形成的阻力不是很大,但是这些阻力却可以影响风机盘管系统的送风量。另外空调在实际工作中,会进入灰尘等,而这些灰尘可能会堵塞滤网,而这些阻力因素往往也影响着风机盘管的送风情况,所以无论用哪一种方法来进行选型,都需要考虑到阻力因素。

怎么判断风机盘管的好坏

1、通过技术的标准来判断风机盘管,即GB/T19232的技术要求的符合程度。符合程度比较高,则风机盘管的品质越高,所以我们在选择风机盘管的时候要考虑这个技术因素。

2、通过风机盘管的生产具体指标来判断风机盘管的好坏,有些劣质的风机盘管没有标准的生产指标,也没有合格和测量标准,而品质比较好的风机盘管会有各项品质生产合格等指标,是规范化的生产。

3、通过风机盘管的服务来判断风机盘管的好坏,后续风机盘管出现问题,可以有服务及时帮我们处理。

如何计算循环水泵扬程?

下面是中达咨询给大家带来关于空调水系统的设计与施工的相关内容,以供参考。

一.设备间面积及层高与管路布置原则

随着智能建筑及建筑功能的发展,设备布置所需的空间越来越受限制了。设备间的管路管线只有认真合理的进行空间管理,才能节省空间,并避免不必要的返工。

设备层布置原则:20层以内的高层建筑:宜在上部或下部设一个设备层

30层以内的高层建筑:宜在上部和下部设两个设备层

30层以上超高层建筑:宜在上、中、下分别设设备层

生产厂房宜在其周边辅房内设空调设备,冷水机组及锅炉房等设备宜设在独立的建筑内。

设备层内管道布置原则:离地h≤2.0m布置空调设备,水泵等

h=2.5~3.0m布置冷、热水管道

h=3.6~4.6m布置空调通风管道

h〉4.6m布置电线电缆

设备层层高概略:

建筑面积(m2)设备层层高(m)建筑面积(m2)设备层层高(m)10004.0150005.530004.5200006.050004.5250006.0100005.0300006.5

在实际施工中往往因为机房空间不够或管线布置不合理,导致没有空调水阀组的安装位置,阀门装设过高,不便操作。

二.水泵选择与安装

在设计空调水系统时应进行必要的水力计算,根据设计流量计算出在该流量下管路的阻力,以确保选用水泵的扬程合理。在对流量和扬程乘以一定的安全裕量后,进行水泵的选择。有些设计人员未进行设计计算,认为扬程大一些保险,导致所选择的水泵不能满足要求,或者造成运行费用增加,甚至水泵不能正常工作。

一般工程项目中配置的冷水机组都在2至4台之间,对于规模很大的工程项目,甚至需要5台以上的冷水机组并联工作。制冷站内的主机与水泵的匹配一般来说是一机对一泵,以保证冷水机组的水流量及正常运行,因此,目前我国空调水系统大多为有2台或2台以上水泵并联的定流量系统或一次泵变流量系统。空调设计时,都是按最大负荷情况来进行设备选择以保证最不利情况时的需要。在循环水泵用并联运行方式时,选择水泵一定要按管路特性与水泵并联特性曲线进行选型计算。选型时,除应注意水泵在设计工况时的性能参数外,还应关注水泵的特性曲线,尽量选择特性曲线陡的水泵并联工作。运行人员应注意工况转换时对阀门的调节。

很多空调设计都是冬夏两用的,即随着季节的变化,为盘管供应冷水或热水。冬季热负荷一般比夏季冷负荷小,且空调水系统供回水温差夏季一般取5℃,冬季取10℃,根据空调水系统循环流量计算公式G=0.86Q/ΔT(式中Q为空调负荷KW,ΔT为水系统温差℃,G为水系统循环流量m3/h),则夏季空调循环水流量将是冬季的2-3倍。所以水泵应根据夏季工况参数选型。

水泵安装时,其进出水口均应安装金属软接或橡胶软接,以减小振动对管路的影响,并保护水泵。重量大于300kg的水泵应安装惯性基础和减震器。惯性基础一般用型钢框架内填混凝土(C30)制作。惯性基础的重量一般为水泵自重的1.5—2倍。减震器应根据惯性基础重量和水泵重量并考虑水泵的动载荷选取。此外还应在水泵惯性基础上安装水平限位装置。

水泵出口声响异常,一般是系统阻力太大,导致系统缺水来引起的。

解决方法:1.再开启一台水泵。运行两台水泵时,异响消失。

2.适当关小泵出口阀门,异响消失。

3.泵前过滤器太脏,吸不上水,拆洗过滤器。

4.系统排气,减小系统阻力。

三.冷冻水系统设计与施工

1.系统冷冻水(或盐水)流量估算0.14~0.20L/S(0.25~0.40L/S)/冷吨。1RT=3516.91W。

2.冷冻水系统的补水量(膨胀水箱)

水箱容积计算:Vb=a△tVsm3

Vb—膨胀水箱有效容积(即从信号管到溢流管之间高差内的容积)m3

a—水的体积膨胀系数,a=0.0006L/℃

△t—最大的水温变化值℃

Vs—系统内的水容量m3,即系统中管道和设备内总容水量

3.冷冻水系统流速规定

DN100及以上管道:2.0m/s~3.0m/s

DN80~DN100管道:1.0m/s~2.0m/s

DN40~DN80管道:1.0m/s左右

DN40以下管道:1.0m/s以下

无论如何,冷冻水系统管路的流速不应大于3.0m/s。

系统运行时或刚开机时,水中不可避免混有空气,所以系统管路上应根据管径安装自动放气阀。特别要注意立管顶端最易积聚空气,阻碍冷冻水正常流动,必须安装自动放气阀。为便于维修,在过滤器及控制阀处应设置旁通管,在水泵的进出口处,系统最低点和局部低点应设排水阀。

生产厂房内冷冻水系统如果系统较大,末端设备较多时,建议用同程式系统。既可以避免安装多级平衡阀,节约成本,又容易达到水力平衡。

冷冻水系统管路多用焊接,焊渣等杂物非常容易掉到管道内,堵塞过滤器或盘管。所以安装完成后,应进行管路清洗,清洗时应敲打管路,除去附着在管内壁的焊渣等杂物。系统初次运行一周后应清洗过滤器。空调水管路焊接应该用氩弧焊打底,电焊盖面。因为氩弧焊打底不会出现焊渣,且焊缝致密,不易渗漏。

冷冻水系统初次运行时,应先打开供水阀,待系统充满水后,再打开回水阀,以利于去除管路的杂质,防止进入盘管。

四.冷却水系统设计与施工

制冷机冷却水量估算表

活塞式制冷机(t/kw)0.215离心式制冷机(t/kw)0.258吸收式制冷机(t/kw)0.3螺杆式制冷机(t/kw)0.193~0.322

冷却塔的选择:

1.现在一般中央空调工程使用较多的是低噪声或超低噪声型玻璃钢逆流式冷却塔,其国产品的代号一般为DBNL-水量数(m3/h)。如DBNL3-100型表示水量为100m3/h,第三次改型设计的超低噪声玻璃钢逆流式冷却塔。即:水量数(m3/h)=(主机制冷量+压缩机输入功率)÷3.165

2.初先的冷却塔的名义流量应满足冷水机组要求的冷却水量,同时塔的进水和出水温度应分别与冷水机组冷凝器的出水和进水温度相一致。再根据设计地室外空气的湿球温度,查产品样本给出的塔热工性能曲线或说明,校核塔的实际流量是否仍不小于冷水机要求的冷却水量。

3.校核所选塔的结构尺寸、运行重量是否适合现场安装条件

4.简要经验值计算公式:

设备总冷量(KW)-856(大卡)÷3000-(1.2~1.3)=冷却塔水流量

冷却水系统的补水量包括:1蒸发损失2漂水损失3排污损失4泄水损失

建议冷却水系统的补水量取为循环水量的1—1.6%,电制冷、水质好时,取小值,溴化锂吸收式制冷、水质差时,取大值。冷却水系统设计应注意的问题

1.多台冷却塔并联时,冷却塔进水管路应设置平衡阀或电动控制阀,平衡管路阻力。

2.冷却水系统水质较差时,应设计旁滤系统,过滤冷却水。

3.在有结冻危险的地区,冷却塔间歇运行时,为防止冷却塔水池结冰,应设加热管线。室外冷却水管应保温。

冷却塔漂水过大是施工调试中经常遇到的问题。其主要原因是冷却水量超过额定流量。调节冷凝器进出水阀门,观察出水压力表,把压差控制在额定范围内(一般压差为0.08MPa左右),一般就可以解决问题。如果不行,再去查看布水器喷口喷射角度是否过于朝下,调节冷却塔布水器的喷射角度,使其稍有倾斜(15度)。

五.冷凝水系统设计与施工

通常,可以根据机组的冷负荷Q(KW)按下列数据近似选定冷凝水管的公称直径。

Q≤7kWDN=20mm

Q=7.1~17.6kWDN=25mm

Q=101~176kWDN=40mm

Q=177~598kWDN=50mm

Q=599~1055kWDN=80mm

Q=1056~1512kWDN=100mm

Q=1513~12462kWDN=125mm

Q>12462kWDN=150mm

注:1.DN=15mm的管道,不推荐使用。2.立管的公称直径,就与水平干管的直径相同。3.冷凝水管的公称直径DN(mm),应根据通过冷凝水的流量计算确定

风机盘管机组、整体式空调器、组合式空调机组等运行过程中产生的冷凝水,必须及时予以排走。排放冷凝水管道的设计,应注意以下事项:

1.沿水流方向,水平管道应保持不小于千分之一的坡度;且不允许有积水部位。

2.当冷凝水盘位于机组负压区段时,凝水盘的出水口处必须设置水封,水封的高度应比凝水盘处的负压(相当于水柱高度)大50%左右。水封的出口,应与大气相通。为了防止冷凝水管道表面产生结露,必须进行防结露验算。

3.冷凝水立管的顶部,应设计通向大气的透气管。

4.设计和布置冷凝水管路时,必须认真考虑定期冲洗的可能性,并应设计安排必要的设施。

5.大型电子厂房的MAU机组,AHU机组因冷凝水量大,应考虑回收。回水的冷凝水可以做为冷却塔的补水。

冷凝水施工中,管道安装一定注意不能倒坡。很多情况都是因为倒坡使冷凝水不能正常排放,导致凝水盘处溢水。安装时存水弯的高度应符合设计要求,否则冷凝水不能排出。

冷凝水管在吊顶上敷设时,应认真保温,防止结露。

四.冷却水系统设计与施工

制冷机冷却水量估算表

活塞式制冷机(t/kw)

0.215离心式制冷机(t/kw)0.258吸收式制冷机(t/kw)0.3螺杆式制冷机(t/kw)0.193~0.322

冷却塔的选择:

1.现在一般中央空调工程使用较多的是低噪声或超低噪声型玻璃钢逆流式冷却塔,其国产品的代号一般为DBNL-水量数(m3/h)。如DBNL3-100型表示水量为100m3/h,第三次改型设计的超低噪声玻璃钢逆流式冷却塔。即:水量数(m3/h)=(主机制冷量+压缩机输入功率)÷3.165

2.初先的冷却塔的名义流量应满足冷水机组要求的冷却水量,同时塔的进水和出水温度应分别与冷水机组冷凝器的出水和进水温度相一致。再根据设计地室外空气的湿球温度,查产品样本给出的塔热工性能曲线或说明,校核塔的实际流量是否仍不小于冷水机要求的冷却水量。

3.校核所选塔的结构尺寸、运行重量是否适合现场安装条件

4.简要经验值计算公式:

设备总冷量(KW)-856(大卡)÷3000-(1.2~1.3)=冷却塔水流量

冷却水系统的补水量包括:1蒸发损失2漂水损失3排污损失4泄水损失

建议冷却水系统的补水量取为循环水量的1—1.6%,电制冷、水质好时,取小值,溴化锂吸收式制冷、水质差时,取大值。冷却水系统设计应注意的问题

1.多台冷却塔并联时,冷却塔进水管路应设置平衡阀或电动控制阀,平衡管路阻力。

2.冷却水系统水质较差时,应设计旁滤系统,过滤冷却水。

3.在有结冻危险的地区,冷却塔间歇运行时,为防止冷却塔水池结冰,应设加热管线。室外冷却水管应保温。

冷却塔漂水过大是施工调试中经常遇到的问题。其主要原因是冷却水量超过额定流量。调节冷凝器进出水阀门,观察出水压力表,把压差控制在额定范围内(一般压差为0.08MPa左右),一般就可以解决问题。如果不行,再去查看布水器喷口喷射角度是否过于朝下,调节冷却塔布水器的喷射角度,使其稍有倾斜(15度)。

五.冷凝水系统设计与施工

通常,可以根据机组的冷负荷Q(KW)按下列数据近似选定冷凝水管的公称直径。

Q≤7kW

DN=20mm

Q=7.1~17.6kWDN=25mm

Q=101~176kWDN=40mm

Q=177~598kWDN=50mm

Q=599~1055kWDN=80mm

Q=1056~1512kWDN=100mm

Q=1513~12462kWDN=125mm

Q>12462kWDN=150mm

注:1.DN=15mm的管道,不推荐使用。2.立管的公称直径,就与水平干管的直径相同。3.冷凝水管的公称直径DN(mm),应根据通过冷凝水的流量计算确定

风机盘管机组、整体式空调器、组合式空调机组等运行过程中产生的冷凝水,必须及时予以排走。排放冷凝水管道的设计,应注意以下事项:

1.沿水流方向,水平管道应保持不小于千分之一的坡度;且不允许有积水部位。

2.当冷凝水盘位于机组负压区段时,凝水盘的出水口处必须设置水封,水封的高度应比凝水盘处的负压(相当于水柱高度)大50%左右。水封的出口,应与大气相通。为了防止冷凝水管道表面产生结露,必须进行防结露验算。

3.冷凝水立管的顶部,应设计通向大气的透气管。

4.设计和布置冷凝水管路时,必须认真考虑定期冲洗的可能性,并应设计安排必要的设施。

5.大型电子厂房的MAU机组,AHU机组因冷凝水量大,应考虑回收。回水的冷凝水可以做为冷却塔的补水。

冷凝水施工中,管道安装一定注意不能倒坡。很多情况都是因为倒坡使冷凝水不能正常排放,导致凝水盘处溢水。安装时存水弯的高度应符合设计要求,否则冷凝水不能排出。

冷凝水管在吊顶上敷设时,应认真保温,防止结露。

更多关于工程/服务/购类的标书代写制作,提升中标率,您可以点击底部客服免费咨询:s://bid.lcyff/#/?source=bdzd

风机盘管的出风温度是由什么决定的,受什么影响?是否有相关公式?谢谢

循环水泵的扬程是指水泵在工作状态下所能克服的水流阻力和重力势能所需的能量。计算循环水泵的扬程需要考虑多种因素,包括泵的性能曲线、管路阻力、液体流量等。

以下是一些基本的计算方法:

确定循环水泵的性能曲线:通过实验或测试,获得循环水泵的性能曲线,以此确定循环水泵的本身扬程和流量特性。

计算管路阻力:根据管路长度、管道截面积、液体流量、摩擦因素等参数,使用经验公式或专业计算软件计算管路阻力。

考虑其他因素:循环水泵扬程还需要考虑其他因素,如液体在管路中的高度差、阀门、管件等局部阻力损失以及管路的弯曲、形状等。

综合计算:根据以上计算结果,将各种阻力损失加总,得出循环水泵的总扬程。

需要注意的是,循环水泵的扬程计算需要考虑很多因素,实际应用中会受到许多外界因素的影响,因此计算结果可能存在一定的误差。在实际应用中,需要结合具体情况和实验数据进行综合计算和调整,以确保循环水泵能够正常运行并满足使用要求。

风机静压是什么

1.关于风机盘管的问题:出风温度首先取决于设备的选型,也就是选型要正确,输入的热量和输出的(热量)风量相匹配;出风温度是由输入的热量和风机的风量决定的,受二者的影响;遵守能量守恒;

2.关于水泵的出水、回水压力:闭式系统中水泵的出水压力只需满足克服管道阻力,通常管道不是太复杂、总回路又不太长水泵的扬程确定在30米即可,也就是0.3MPa;关于水泵的回水压力则要满足系统的最高点不至于产生气化,即应在系统的最高点留有5-10米的压头;水泵的进水压力也就是系统的液柱净高度加上5-10米的压头;例如系统净高为20米,则水泵的给水压力在25-30米是合理的。

暖通空调设计常见知识点问题汇总及解决?

问题一:风机的全压和静压是什么意思 依据 国标 GB/T 1236-2000 标准 来定义 风机全压 和 风机静压

这与一般 全压 = 静压 加 动压 的概念 有点不同

但是如果是 风机的全压 含意还要扩展 风机的全压是指 风机提升流体风压风量的能力 这点要分清楚 不只是全压=静压加动压的概念

然後才能理解 风机全压 = 风机出口全压 减 风机入口全压

风机入口全压=风机入口静压 加 风机入口动压

风机出口全压=风机出口静压 加 风机出口动压

风机全压 =(风机出口静压+风机出口动压)- (风机入口静压+风机入口动压)

以上数据可由量测仪器 量测得出

在根据定义 风机静压 = 风机全压 - 风机动压

风机动压 的定义为 风机出口动压 即 风机动压 =风机出口动压

所以 风机静压=(风机出口静压+风机出口动压)- (风机入口静压+风机入口动压)- 风机出口动压

=风机出口静压 - 风机入口静压 - 风机入口动压

问题二:风机的排风量和静压有什么关系? 你把问题详细的说一下

问题三:风机静压有什么实际作用? 静压的作用是,克服管道沿程阻力可以在确保风量、风速不变的前提下能够送风的距离。

问题四:风机静压的实际意义? 风机静压等于出口静压减去进口全压,实际意义的确不很明显,有点人为地把出口动压从风机压力里面割裂出来的意思。

在实际使用中,进口全压通常是恒定的,这时,风机静压与出口静压就存在线性关系梗相同的风量和压力下,风机静压越大,出口静压就越大,出口动压就越小,管路损失也就越小,风也就可以传送得更远。

所以,许多客户都希望风机静压能比较高。

问题五:> 风机的全压和静压如何定义? 复制内容,供参考:

全压

通风机的全压定义为通风机出口截面上的总压与进口截面上的总压之差。

气流在某一点或某一截面上的全压等于该点或该截面上的动压与静压之和。

静压

通风机的静压定义为通风机的全压减去通风机的动压。实际上静压是气流中某一点的或充满气体的空间某点的绝对压力

与大气压力之压力差,该点的压力高于大气压力时为正值,低于时则为负值。

静压能作用于气体的各个方向,与速度无关,是气体中的潜能的量度。

问题六:风机的静压与动压有何区别 其测定方法为:在流体管道的管壁上开个小孔,用一根测压管接在上面,测压管与水平面垂直,测压管中液柱的高度即为管道内该处相对于大气的压力,也即相对静压。动压:动压是由于流体的运动而产生的压力,其值不小于零。计算方法为ρν2/2,ρ为流体密度,ν为流体速度。说到一个通风设备,静压是不科学的说法,不过习惯了也就合理了. 静压和余压是同一个物理量. 静压是指将风机开启,出风口关闭(此时无动压)测得的静压(等于全压). 余压指设备除了风机还有盘管、滤网等辅件构成,扣除辅件的阻力剩余的全压就是余压,便于选择配管等。 就风机盘管的接管来说,管道阻力不大(不超过1Pa/m)主要考虑出风口、回风口的局部阻力即可。静压是指将风机开启,出风口关闭(此时无动压)测得的静压。 动压是指出风口开启后因为气流流动引起的压力,动压=0.5*q*v2=0.5*空气密度*风速的平方; 工程当中一般将风速都按定值设计,所以动压就是恒定的,所以克服管路阻力实际上是静压,所以一般正规的厂家介绍时都是说静压,而不说出口余压。风管和水管是不一样的.在流体力学中,空气是可压流体,水是不可压流体,在流体力学理论建立的模型基础都是不同的“静压是由于分子运动力产生的对壁面的压能,在流场内各点大小都一致;动压是因为流体动量形成的压能,仅在迎着来流方向存在。这是一对理论范畴。全压是静压和动压的总和,反应了流体的做功能力水平。在流体流动过程中,扣除阻力损失后,静压和动压会相互转化。并不是不变的。” 大多数的人都理解 全压=动压+静压,但对“静压和动压会相互转化”理解不是很深。全压=动压+静压,也就是说,一旦风机选定,可以理解为风机的全压是一个定值(当然还与电源电压等有影响),但由于系统各点的阻力(局部和沿程)的影响,系统各点的全压是不同的。 对于动能,很多人都查了资料教材,也说的很对!但对静压怎么得出来的,看法不一致。 呵呵,其实,很简单啊,既然有 全压=动压+静压,那不是 静压=全压-动压 吗? 可能有些人认为不对,爱与水的静压来对比,公式也的确也没有错,但是,空气与还是有很大的区别的,尽管在实际大多数工程中,可以认为空气不能被压缩。 比较一下空气和水的动力黏度值就会发现它们之间有多大!!!空气分子运动能和水的运动相比吗?水往低处流,而空气呢?它的运动方式就更加的复杂,其复杂恰就在于“静压和动压会相互转化”,且几乎时刻都在转化。也就是说静压难测,也很少测。但动压好测啊,呵呵,所以有:静压=全压-动压。 再说说余压,从概念来说,余压就是剩余下来的压力。而机外余压呢,就是通过风机自身损失后剩下的压力。 余压是个相对值,也就是说,它在系统中是变化的,每个点后面的余压都是不通的。其计算公式为:余压=全压-压力损失(局部和沿程)。举个例子:如果把一段管分为两段,且标号为A(起点)-B-C(终点)的话,那么,B点的余压就成了B-C段的全压了。 那么机外余压的道理也一样:机外余压=风机全压-风机内的压力损失(局部和沿程)。当然,如果,把风机和机组(过滤器、表冷器等附件放在一起),这就是前面有人提到的“空调机组余压”了。 总之,从某种意义来说,余压=全压(相对于剩余系统)=动压+静压。

问题七:风机的全压和静压有什么区别 这与一般 全压 = 静压 加 动压 的概念 有点不同但是如果是 风机的全压 含意还要扩展 风机的全压是指 风机提升流体风压风量的能力 这点要分清楚 不只是全压=静压加动压的概念然後才能理解 风机全压 = 风机出口全压 减 风机入口全压风机入口全压=风机入口静压 加 风机入口动压风机出口全压=风机出口静压 加 风机出口动压风机全压 =(风机出口静压+风机出口动压)- (风机入口静压+风机入口动压)以上数据可由量测仪器 量测得出在根据定义 风机静压 = 风机全压 - 风机动压风机动压 的定义为 风机出口动压 即 风机动压 =风机出口动压所以 风机静压=(风机出口静压+风机出口动压)- (风机入口静压+风机入口动压)- 风机出口动压=风机出口静压 - 风机入口静压 - 风机入口动压答:序批式活性污泥法在炼油化工废水处理中的应用

问题八:风机的,静压,动压,全压,分别指什么? 所谓静压的定义是:气体对平行于气流的物体表面作用的压力。通俗的讲:静压

是指克服管道阻力的压力。

动压的定义是:把气体流动中所需动能转化成压的的形式。通俗的讲:动压

是带动气体向前运动的压力。

全压=静压+动压

问题九:风机中全压、静压、动压是什么意思? 为了弄清楚风机中全压、静压、动压的意思,先看看这个下面的公式:全压=静压+动压动压=供.5*空气密度*风速^2余压=全压-系统内各设备的阻力比如:空调机组共有:回风段、初效段、表冷段、中间段、加热段、送风机段组成,各功能段阻力分别为:20Pa、80Pa、120Pa、20Pa、100、50Pa,机内阻力为290Pa,若要求机外余压为500Pa,刚送风机的全压应不小于790Pa,若要求机外余压为1100Pa,刚送风机的全压应不小于1390Pa,高余压一般为净化机组,风压的大小与电机功率的选择有关。

问题十:风机的静压 和 出口的静压 的区别 煞是想吃。掏出钱包,

暖通空调设计常见知识点问题汇总及解决具体内容是什么,下面中达咨询为大家解答。

水泵在系统的设计位置

一般而言,冷冻水泵应设在冷水机组前端,从末端回来的冷冻水经过冷冻水泵打回冷水机组;冷却水泵设在冷却水进机组的水路上,从冷却塔出来的冷却水经冷却水泵打回机组;热水循环泵设在回水干管上,从末端回来的热水经过热水循环泵打回板式换热器。

冷却塔上的阀门设计

1、冷却塔进水管上加电磁阀(不提倡使用手动阀)

2、管泄水阀应该设置于室内,(若放置在室外,由于管内有部分存水,冬天易冻)。

电子水处理仪的安装位置

放置于水泵后面,主机前面。

过滤器前后的阀门

过滤器前后放压力表。

水泵前后的阀门

1、水泵进水管依次接:蝶阀-压力表-软接。

2、水泵出水管依次接:软接-压力表-止回阀-蝶阀。

分/集水器

1、分/集水器之间加电动压差旁通阀和旁通管(管径一般取DN50)。

2、集水器的回水管上应设温度计。

各种仪表的位置

布置温度表,压力表及其他测量仪表应设于便于观察的地方,阀门高度一般离地1.2-1.5m,高于此高度时,应设置工作平台。

机组的位置

两台压缩机突出部分之间的距离小于1.0m,制冷机与墙壁之间的距离和非主要通道的距离不小于0.8m, 大中型制冷机组(离心,螺杆,吸收式制冷机)其间距为1.5-2.0m。制冷机组的制冷机房的上部最好预留起吊最大部件的吊钩或设置电动起吊设备。

问题点一:水管的坡度要合理

1、水平支、干管,沿水流方向应保持不小于0.002的坡度;

2、机组水盘的泄水支管坡度不宜小于0.01。

3、因条件限制时,可无坡度敷设,但管内流速不得小于0.25m/s。

问题点二:冷凝水干管的设计

1、冷凝水应就近排放,一般排于卫生间地漏。

2、凝水干管的长度设计要考虑因坡降引起的高度,管两端高低落差距离不能大于吊顶高度。

问题点三:选择合适的管路阀件

1、立管与水平管连接处装调节阀

3、水管路的每个最高点设排气装置(当无坡度敷设时,在水平管水流的终点)

3、立管最低处连接关断阀,便于维修立管

4、水管的热力补偿可以利用弯头自然补偿,不足时也可加设膨胀补偿器

问题点四:水管布置

1、立管在管道井内不宜乱放,宜靠墙靠角安放(见附图)

2、管道在水平面内禁止穿越楼梯、剪力墙、配电室等

问题点五:水管保温

1、保温结构一般由保温层和保护层组成

2、保温层厚度要根据热力计算确定,经验值可参考《民用建筑空调设计》。

3、保温材料可因地制宜,就近取材,应用非燃或难燃材料,必须符合《建筑设计防火规范》。

问题点六:水力计算

1、空调水系统各并联环路压力损失差额,不应大于15%;

2、水管路比摩阻宜控制在100-300Pa/m。

问题点七:水系统补水

1、空调水系统补水应经软化水处理,仅夏天供冷的系统可用电子水处理仪;

2、系统补水量取系统水容量的2%;

3、补水点宜设在循环水泵的吸入段。

末端设计中应注意的问题点

1.接风管的风盘的风口设计,见附图。

1)第一个送风口与风盘的出风口的距离要适当;

2)带有两个出风口的风盘送风管要变径;

3)风盘的送风口与回风口距离要适当。(≤5米)

2.风机盘管的进出水管路设计,见附图1-2。

1)进出水管路为"上进下出";

2)风盘与供回水干管的相对标高不小于200mm;

3)进水管上依次接过滤器、闸阀、和软接;

4)出水管上接软接、闸阀。

3.同型号风盘的出风口数量的确定

同型号风盘的出风口数量可视空调区域的不同而定,见附图1-3。

4.两个小包间共用一个风盘的气流组织

两个小包间共用一个风盘,每个包间可设一个出风口,两个包间的回风口可以通过串联接到风盘的回风口上。

5.靠近窗口的风盘布置:

为抵挡室外冷负荷渗透,风机盘管应该尽量靠近外墙、外窗布置。

6.大空间的风机盘管的布置:

在大空间布置风机盘管时,宜以中间回风,两边送风的气流组织方式布置风盘。

7.嵌入机的布置:嵌入机布置时离边墙的距离不得大于3米;

诸如会议室、多功能厅等布置嵌入机时应该选用小冷量的多台机器,均匀布置。

8.内机选型:大空间可选用嵌入机,长方形办公室最好选用卡式机。

9.风口选型:高空间不宜选用散流器送风(风不宜送达工作区),最好使用可调双层百叶送风口。

10.回风箱的做法:

空气处理机的回风设计:在回风处做比较大的回风箱,在回风箱一侧开回风口,该做法可调节气流,降低噪音)。

11.根据房间功用和冷负荷设计合适的风盘。

风盘选型要以设计负荷为依据,风盘布置要考虑空调房间的特点尽量布置美观。

12.送、排风口的距离要适当。

排风口与送风口至少保持3米的距离以防气流短路。

13.选用合适的风阀。

从原则上讲,系统风压平衡的误差在10%-15%以内,可以不设调节阀,但实际上仅靠调风管尺寸来调风压是很困难的,所以,要设风量调节阀进行调节。

① 风管分支处应设风量调节阀。在三通分支处可设三通调节阀,或在分支处设调节阀。

② 明显不利的环路可以不设调节阀,以减少阻力损失。

③ 在需防火阀处可用防火调节阀替代调节阀。

④ 送风口处的百叶风口宜用带调节阀的送风口,要求不高的可用双层百叶风口,用调节风口角度调节风量。

⑤ 新风进口处宜装设可严密开关的风阀,严寒地区应装设保温风阀,有自动控制时,应用电动风阀。

14.风管的布置。

① 要尽量减少局部阻力,即减少弯管、三通、变径的数量。

② 弯管的中心曲率半径不要小于其风管直径或边长,一般可用1.25倍直径或边长。

③ 为便于风管系统的调节,在干管分支点前后,应预留测压孔。测压孔距前面的局部管件的距离应大于5b(b为矩形风管的长边或圆形风管的直径),距后面的局部管件的距离应不小于2b。通风机出口处气流较稳定的管段上宜应预留测压孔。

15.新风进口位置

① 进风口宜设在室外空气比较洁净的地方,保证空气质量。

② 宜设在北墙上,避免设在屋顶和西墙上,并宜设在建筑物的背阴处这样可以使夏季吸入的室外空气温度低一些。

③ 进风口底部距室外地面不宜小于两米,当进风口布置在绿化地带时,则不宜小于一米。

④ 应尽量布置在排风口的上风侧,且低于排风口,并尽量保持不小于10米的间距。

16.新风口的要求

① 宜用固定百叶窗。

② 多雨地区宜用防水百叶窗以防雨水进入。

③ 为防止鸟类进入,百叶窗内宜设金属网。

17.排风管的新做法

类似酒店客房的排风系统设计可如下考虑:利用排气扇将室内风排到走廊的吊顶内,在走廊设排风管排风,为有效利用余热,排风机可设置于卫生间。

18.风口与边墙的距离:风口距墙不应小于1米。

19. 风口的选用:

① 新风口,送风口用双层百叶风口;

② 回风口用格栅风口;

③ 排风口用双层百叶;

④ 氟系统由于风量一般比较小,如要求冬季暖需要,宜用用双层百叶,不能用散流器。

⑤ 风机盘管带两个风口时宜选用带调节阀的双层百叶。

20. 风口的凝露

风口凝露是由于风口小,温度低。可加大风口尺寸防止凝露。

21.静压箱的计算

① 静压箱控制风速宜不大于1.5m/s

② 出风截面积A=G/V(G为送风量),各方向截面积应一样

③ 一般的系统可以用风口变径加消音器代替静压箱

22.防排烟换气次数的确定。

① 消防水泵间不小于4次

② 变电室5-8次

③ 变电室5-8次

23.排烟口的布置。

①走廊超过60米,做排烟口。

②电梯前室用常开型多叶送风口,每层设一个。

③楼梯间用自垂百叶风口,2-3层设一个。

24.房间的空气压力状态。

①建筑物内的空气调节房间应维持正压。

②建筑物内的厕所、盥洗间、各种设备用房应维持负压负压。

③旅馆客房内应维持正压,盥洗间应维持负压。

④餐厅的前厅应维持正压,厨房应维持负压。餐厅内的空气压力应处于前厅和厨房之间。

25.吊顶内的风管布置原则:从上到下依次为:排烟风管,排风管,送风管,水管。

26.送、排风口的相对位置

空调房间并行送排风管时,送排风口尽量不要并列布置,最好交错布置。

27.送风管的设计

尽量使风在送风管内不倒走,确保良好的管内气流流动和出风效果。

28.三通与风管的搭接

和三通相接的管径要于三通的口径保持一致,不要变径,避免局部损失过大。

关于通风、排烟和防烟

1.排除余热余湿的通风换气次数的确定。

①消防水泵间不小于8次/h;

②变电室10次/h。

2.排烟主要是对地下车库、面积超过100m2且无外窗的房间、内走道、中庭及面积超过50m2的地下室。

①排烟量计算详见《高层民用建筑设计防火规范》

3.防烟

主要是对防烟楼梯间及消防电梯前室(合用前室)进行加压送风。

①风量计算参见《高层民用建筑设计防火规范》。

②风口设置消防电梯前室(合用前室)必须每层设置多叶送风口,防烟楼梯间可以隔层设置自垂式百叶送风口。

另外也可以用自然排烟,即在有外窗并且外窗的可开启面积满足一定的要求,可以不用机械防烟。

更多关于工程/服务/购类的标书代写制作,提升中标率,您可以点击底部客服免费咨询:s://bid.lcyff/#/?source=bdzd